エヌビディアが機械学習の「パラダイムを覆す」新手法を研究中
機械学習アルゴリズムを訓練するには膨大なデータが必要だ。少量のデータで訓練できるようになれば現在のパラダイムはひっくり返る。精度を損なうことなくアルゴリズムを小型化する研究を進めていることをエヌビディアの主任科学者が明かした。 by Yiting Sun2018.02.06
グーグルが1月に「クラウド・オートML(Cloud AutoAI)」と呼ばれる新しいサービスを開始した。機械学習ソフトウェアを開発する上での難所のいくつかを自動化できるというものだ。このプロジェクトに取り組んでいる間、強力なアルゴリズムを訓練するために、グーグルの研究者たちは時に800基ものグラフィック・プロセッサー(GPU)を同時に稼働させなければならなかった。
1つか2つの例を目にしただけでコーヒーカップを識別できる人間と違って、シミュレートされたニューロンを基礎とする人工知能(AI)ネットワークが何らかの物体を識別するには、何万もの例が必要となる。そうした方法で身の回りのあらゆる物を認識するように学習しようとすると想像すれば、AIソフトウェアが膨大な演算能力を必要とする理由が分かってくるはずだ。
…
- 人気の記事ランキング
-
- How AI and Wikipedia have sent vulnerable languages into a doom spiral AI翻訳のゴミに汚染された ウィキペディア、 マイナー言語にとどめ
- The three big unanswered questions about Sora 時間も資金も溶かす? AI動画SNS「Sora」3つの疑問
- 2025 Climate Tech Companies to Watch: HiNa Battery Technology and its effort to commercialize salt cells 気候テック10:ナトリウムイオンでリチウム代替狙う中国ハイナ
- EV tax credits are dead in the US. Now what? 米EV減税が正式廃止、今後の動きをドイツの先例から予想