KADOKAWA Technology Review
×
ASMLはいかにして
半導体製造の「チェス盤」を
支配したのか
ASML
コンピューティング Insider Online限定
How ASML took over the chipmaking chessboard

ASMLはいかにして
半導体製造の「チェス盤」を
支配したのか

半導体製造装置において圧倒的な地位を築いたASML。倒産の危機に見舞われながらも、なぜ成功できたのか。CTO退任直前のマルティン・ファン・デン・ブリンクに話を聞いた。 by James O'Donnell2024.05.09

カリフォルニア州サンノゼのいつもと変わらない月曜日の朝。サンノゼコンベンションセンターでは「SPIE先進リソグラフィー・パターニング会議(SPIE Advanced Lithography and Patterning Conference)」の出席者が列を作ってメインホールへと入場していた。会場は満席となり、後方や左右の壁沿いにも人が並び始めた。半導体業界で働く人々が世界中から集結した。冷える2月の朝に、インテルの共同創業者で初代最高経営責任者(CEO)の故ゴードン・ムーアを称える業界著名人のスピーチを聞くために集まったのだ。

インテルのクレイグ・バレット元CEOがムーアに敬意を表した。伝説の技術者で、液浸リソグラフィー(およそ20年前に半導体業界が前進し続けることを可能にしたパターニング技術)の先駆者であるバーン・ジェン・リンもムーアを称えた。スピーチでは、ムーア自身に関する回想が語られることが多かった。その才能や偉業、人間性に関する証言だ。だが、最後に登壇したマルティン・ファン・デン・ブリンクの話は毛色が違っていた。追悼の辞というよりも、ウィニング・ランのような内容だったのだ。ファン・デン・ブリンクはオランダ企業ASMLの共同社長兼最高技術責任者(CTO)で、間もなく退任する(日本版注:この記事の原文掲載直後の4月24日に退任)。ASMLは、半導体メーカー向けに最先端のコンピューター・チップ製造装置を生産している企業だ。

ムーアの法則は、集積回路上のトランジスターの数がほぼ2年ごとに倍になるという経験則である。要するに、マイクロチップにさらにトランジスターを搭載するために、半導体メーカーは常にトランジスターの小型化を目指すことになる。トランジスターの大きさが数ナノメートルになった今、そのペースを維持するのはどんどん困難になってきている。近年、ASMLの装置はムーアの法則の失速を抑制してきた。現在、半導体メーカーがおおむねペースを守るために必要な密度で回路を生み出す能力を持つ企業は、世界中でASMLしか存在しない。業界を毎年のように推進させているのはムーアの法則自体の前提である、とファン・デン・ブリンクは語った。

1984年にASMLに入社して以降、ムーアの法則を維持することがどんなにすばらしい偉業だったかを示すため、ファン・デン・ブリンクは「米粒とチェス盤の問題」に言及した。この問題では、米粒(トランジスターを表している)の数がマス目ごとに倍増していく。1959年以降、チップに詰め込むことができるトランジスターの数が指数関数的に増加したことで、当時は米一粒だったのが今では全長240mの海洋タンカー3隻分にまで増えた。膨大な量である。それでも、ムーアの法則はASML(およびテクノロジー産業全体)に前進することを強いている。コンピューティングの時代(直近はAIの時代)が進むたびに要求が高まっている、とファン・デン・ブリンクは説明した。タンカー3隻分の米粒は膨大に思えるだろうが、将来的には6隻必要になるかもしれない。さらに12隻、24隻——といった具合だ。

ファン・デン・ブリンクは聴衆に対し、ASMLの技術がそうした要求に応えるべく存在していくことを約束した。さらに微細な形状を形成できるツール(2017年に大規模な生産が始まった極紫外線(EUV)リソグラフィー装置や、現在生産中の高開口数(高NA)EUV装置、将来的な開発の概略が示されたハイパーNA EUV装置)の開発に投資してきたおかげである。

ファン・デン・ブリンクの賛辞はゴードン・ムーアに向けられたものだったかもしれないが、スピーチが終わると多くの出席者が立ち上がり、会場全体が拍手に包まれた。ファン・デン・ブリンクの言うように、半導体業界を進展させる法則を導き出した功績がゴードン・ムーアにあるのであれば、ファン・デン・ブリンクとASMLは、その進展を可能にし続けている功績の大きな部分を担っていることになるからだ。

それはまた、プレッシャーにさらされているということでもある。ASMLはムーアの法則の要求に遅れを取らないようにしなければならないのだ。 半導体メーカーがチェス盤の米粒の数を倍増させ続けられるようにしなくてはならない。それは今後も可能なのだろうか?

ファン・デン・ブリンクがMITテクノロジーレビュー のインタビューに応じ、ASMLの歴史とレガシー、今後の展望について語った。

扱いの難しい波長への大きな賭け

ASMLは現在の半導体エコシステムにおいて誰もが認めるリーダーである。同社の市場占有が2017年に始まったばかりであるとは信じがたい。2017年、17年間の開発期間を経て、同社のEUV装置は従来の半導体製造過程を根底から変えた。

60年代以降、フォトリソグラフィーはコンピューター・チップに部品をどんどん詰め込むことを可能にしてきた。フォトリソグラフィーでは光線を連続した鏡とレンズに通し、パターンが刻まれたマスクにその光を当てることで小さな回路を作製する。光がチップの設計を一層ごとに伝え、最終的にスマートフォンからAIに至るまで、あらゆるコンピューティングの構成要素となる回路を構築する。

フォトリソグラフィーの手法では小さな設計を構築する際の手段が限られており、数十年の間、もっとも重要なのは装置で使用する光の種類だった。60年代には、可視光線が使用されていた。可視光でチップに描くことができた最小設計はかなり大きなもので、マジックを使って肖像画を描くようなものだった。

その後、メーカーはどんどん短い波長の光を用いるようになり、80年代の初頭までに紫外線でのチップ作製が可能になった。当時業界をリードしていたのはニコンとキヤノンだった。1984年にオランダのアイントホーフェンにあるフィリップスの子会社として設立されたASMLは、まだ小さな存在に過ぎなかった。

ファン・デン・ブリンクが同社に …

こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。
人気の記事ランキング
  1. Inside the tedious effort to tally AI’s energy appetite 動画生成は別次元、思ったより深刻だったAIの電力問題
  2. Promotion Call for entries for Innovators Under 35 Japan 2025 「Innovators Under 35 Japan」2025年度候補者募集のお知らせ
  3. IBM aims to build the world’s first large-scale, error-corrected quantum computer by 2028 IBM、世界初の大規模誤り訂正量子コンピューター 28年実現へ
  4. What is vibe coding, exactly? バイブコーディングとは何か? AIに「委ねる」プログラミング新手法
日本発「世界を変える」U35イノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を発信する。

特集ページへ
MITTRが選んだ 世界を変える10大技術 2025年版

本当に長期的に重要となるものは何か?これは、毎年このリストを作成する際に私たちが取り組む問いである。未来を完全に見通すことはできないが、これらの技術が今後何十年にもわたって世界に大きな影響を与えると私たちは予測している。

特集ページへ
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る