コードが公開されているAI関連論文はわずか6%、積極的に公開を
欠けているコードやデータのせいで機械学習の研究を比較することが困難になり、AIの進化を妨げている可能性がある。
サイエンス誌によると、ここ数年のAI関連の主要な学会で発表された400本の論文のうち、コードを共有している発表者はわずか6%だった。データを共有しているのは3分の1、疑似コードと呼ばれるアルゴリズムの要約を共有している発表者は半分強にとどまった。
コードやデータが利用できなければ、研究結果の再現は難しく、既存のツールと新たに開発されたツールを比較して評価するのは不可能に近い。研究者が今後の研究の方向性を決めることも困難だ。
たとえば知的財産権を民間企業が所有している場合など、コードやデータを共有しない事情も理解はできる。だが、詳細を公開しない風潮は広がりつつあるようにも見える。情報の共有を積極的に推奨している学会や論文誌もあり、他もそれに続くべきだろう。
- 参照元: Science
5Gから6Gへ、通信の世界的研究者・太田 香教授「U35」へのメッセージ
世界の工学者を魅了し続ける
eムック『生殖医療と倫理 変容する「生命の始まり」』特集号
壁を突破する「覚悟」——再生医療産業を開拓、畠 賢一郎氏に聞く
書評:サム・アルトマンはいかにして「AI帝国」を築いたか