フェイスブックの
AI研究所が考える
マシン・ビジョンの未来
フェイスブックAI研究所のヤン・ルクン所長(ニューヨーク大学教授)が、マシン・ビジョンの現状と人工知能の未来について語った。映像を見るだけで世界について学び、コモンセンス(常識)を身につけることで、言語という低帯域のデータ伝送手段を人間なみに補えると考えている。 by Tom Simonite2017.03.09
5年前、画像読み取りソフトウェアの精度を高める点で、研究者は突如飛躍的な進化を成し遂げた。背後にあるテクノロジー「人工ニューラル・ネットワーク」が最近の人工知能開発の急激な盛り上がりを支えている(“10 Breakthrough Technologies 2013: Deep Learning”参照)。だからこそ、グーグルやフェイスブックで、ユーザーは自分が保存した写真を検索できるし、顔認識といった新機能を使えるようになった。
フェイスブックAI研究所の所長を務めるニューヨーク大学のヤン・ルクン教授は、マシン・ビジョン用途でニューラル・ネットワークを利用するにあたって先駆的な役割を果たした人物だ。ラクン教授によると、いまだに発展途上な部分はあるが、コモンセンス(常識)を備えたソフトウェアの開発につながる可能性があるという。
現時点でマシン・ビジョンはどれだけ進化していますか?
主役となるモノが目立つ形で写る画像で、最優先課題が被写体を分類することなら、実にうまく行きます。訓練用データが十分にあれば、ひとつのカテゴリーにつき1000ほどの被写体画像データがあれば、自動車ならブランドまで、植物なら種類まで、犬なら犬種まで、モノであれば非常に具体的な形で認識できます。もっと抽象的なカテゴリーの画像、たとえば、画像が風景なのか、夕日、結婚式、誕生パーティーなのかも判別できます。ほんの5年前、この種の課題を完全に解決できるか、はっきりしていませんでした。ただし、ビジョン(視認)という課題が解決できたわけではありません。
「未解決」の重要課題は何でしょうか? …
- 人気の記事ランキング
-
- The first human test of a rejuvenation method will begin “shortly” ハーバード大教授主導の 「若返り治療」初の試験へ、 イーロン・マスクも関心
- Promotion Emerging Technology Nite #36 Special 【3/9開催】2026年版「新規事業の発想と作り方」開催のお知らせ
- Microbes could extract the metal needed for cleantech 微生物で「老朽鉱山」再生、バイオマイニングは金属需要に間に合うか
- What’s next for EV batteries in 2026 米国後退、加速する中国支配 EVバッテリー市場、 2026年はどう動く?
- Stratospheric internet could finally start taking off this year グーグルもメタも失敗した 「成層圏ネット」再挑戦、 2026年に日本で実証実験
