
フェイスブックの
AI研究所が考える
マシン・ビジョンの未来
フェイスブックAI研究所のヤン・ルクン所長(ニューヨーク大学教授)が、マシン・ビジョンの現状と人工知能の未来について語った。映像を見るだけで世界について学び、コモンセンス(常識)を身につけることで、言語という低帯域のデータ伝送手段を人間なみに補えると考えている。 by Tom Simonite2017.03.09
5年前、画像読み取りソフトウェアの精度を高める点で、研究者は突如飛躍的な進化を成し遂げた。背後にあるテクノロジー「人工ニューラル・ネットワーク」が最近の人工知能開発の急激な盛り上がりを支えている(“10 Breakthrough Technologies 2013: Deep Learning”参照)。だからこそ、グーグルやフェイスブックで、ユーザーは自分が保存した写真を検索できるし、顔認識といった新機能を使えるようになった。
フェイスブックAI研究所の所長を務めるニューヨーク大学のヤン・ルクン教授は、マシン・ビジョン用途でニューラル・ネットワークを利用するにあたって先駆的な役割を果たした人物だ。ラクン教授によると、いまだに発展途上な部分はあるが、コモンセンス(常識)を備えたソフトウェアの開発につながる可能性があるという。
現時点でマシン・ビジョンはどれだけ進化していますか?
主役となるモノが目立つ形で写る画像で、最優先課題が被写体を分類することなら、実にうまく行きます。訓練用データが十分にあれば、ひとつのカテゴリーにつき1000ほどの被写体画像データがあれば、自動車ならブランドまで、植物なら種類まで、犬なら犬種まで、モノであれば非常に具体的な形で認識できます。もっと抽象的なカテゴリーの画像、たとえば、画像が風景なのか、夕日、結婚式、誕生パーティーなのかも判別できます。ほんの5年前、この種の課題を完全に解決できるか、はっきりしていませんでした。ただし、ビジョン(視認)という課題が解決できたわけではありません。
「未解決」の重要課題は何でしょうか? …
- 人気の記事ランキング
-
- Inside the tedious effort to tally AI’s energy appetite 動画生成は別次元、思ったより深刻だったAIの電力問題
- Promotion Call for entries for Innovators Under 35 Japan 2025 「Innovators Under 35 Japan」2025年度候補者募集のお知らせ
- IBM aims to build the world’s first large-scale, error-corrected quantum computer by 2028 IBM、世界初の大規模誤り訂正量子コンピューター 28年実現へ
- What’s next for AI and math 数学オリンピックで「人間超え」のAIは数学者になれるか?
- What is vibe coding, exactly? バイブコーディングとは何か? AIに「委ねる」プログラミング新手法