フラッシュ2022年7月16日
-
マルチエージェント環境でのモデル学習を安定化=電通大とCA
by MITテクノロジーレビュー編集部 [MIT Technology Review Japan]電気通信大学とサイバーエージェントの研究グループは、複数のモデルに学習させる「マルチエージェント」環境において、それぞれのモデルが同じ最適解に近づくようにできる新手法を開発した。
マルチエージェントで複数のモデルに学習させるときには、それぞれ独立に学習させる方法を採ることが多い。しかし、この方法では、複数のモデルの学習結果が最適な解に収束せず、周期的な軌道に陥ってしまう問題が発生する。
そこで研究グループは、特定の方向への学習を促進させる「突然変異」を加える手法を考案した。これによって、マルチエージェントでのモデル学習が周期的な軌道に陥ることなく、最適解の近傍に安定して収束するようになった。
研究成果は、2022年8月に開催される機械学習分野の国際会議UAI (Conference on Uncertainty in Artificial Intelligence)2022で発表する予定。サイバーエージェントは同社の広告配信などに活用していく考えだ。
(笹田)
-
- 人気の記事ランキング
-
- Inside the tedious effort to tally AI’s energy appetite 動画生成は別次元、思ったより深刻だったAIの電力問題
- Promotion Call for entries for Innovators Under 35 Japan 2025 「Innovators Under 35 Japan」2025年度候補者募集のお知らせ
- When AIs bargain, a less advanced agent could cost you 大規模モデルはやっぱり強かった——AIエージェント、交渉結果に差
- AI copyright anxiety will hold back creativity 「生成AIはコピー機」 という主張から考える 創造性の原理
- These new batteries are finding a niche ナトリウム電池、ニッチ分野で存在感 スクーター、送電網などで