フラッシュ2023年12月14日
-
コンピューティング
2次元に閉じ込めた「重い電子」を初めて実現=阪大など
by MITテクノロジーレビュー編集部 [MIT Technology Review Japan]大阪大学、量子科学技術研究開発機構などの共同研究チームは、電子間の多体効果である「近藤効果」により伝導電子の有効質量が増大する「重い電子」を、原子1層の厚みしか持たない単原子層物質において実現した。原子1枚の厚みに閉じ込めた重い電子状態を実現したのは世界初だという。
近藤効果は、金属中に磁性不純物(鉄やニッケルなど)がごく僅かに存在する場合、ある温度以下で電気抵抗が増加する現象である(近藤淳博士が1964年にその物理的機構を解明した)。研究チームは今回、単原子層イッテルビウム・銅(YbCu2)薄膜の作製に成功し、その電子構造をシンクロトロン光を用いた「角度分解光電子分光」によって調べた。その結果、YbCu2原子層内を伝播する2次元的な伝導電子が、低温において重い電子を形成することを明らかにした。
近年のナノテクノロジーの発展に伴い、グラフェンに代表される低次元(2次元、1次元)材料研究が活発になっている。希土類化合物における重い電子はこれまで、3次元固体物質では盛んに研究されてきたが、2次元系の極限である原子1枚の厚みしか持たない単原子層物質で実現するかどうかは明確でなかった。
今回の成果により、新奇超伝導などの物性物理学における量子臨界現象への次元性の役割の解明が進むとともに、近年爆発的に研究が進む原子層物質に、新たな機能性を有する物質が加わることになり、次世代材料開発や新しいエレクトロニクス素子、量子コンピューター設計開発の指針となることが期待される。
研究論文は、英国科学誌ネイチャー・コミュニケーションズ(Nature Communications)に、12月1日付けで掲載された。
(中條)
-
- 人気の記事ランキング
-
- China wants to restore the sea with high-tech marine ranches 海に浮かぶ巨大施設、 中国が進める スマート海洋牧場の野望
- Promotion Innovators Under 35 Japan × CROSS U 無料イベント「U35イノベーターと考える研究者のキャリア戦略」のご案内
- Trajectory of U35 Innovators: Masaki Nakada 仲田真輝:人工生命起業家が「魚の養殖」にピボットした理由
- Anthropic’s chief scientist on 5 ways agents will be even better in 2025 アンソロピック主任科学者が語る「AIエージェント」4つの進化
- What’s next for AI in 2025 2025年のAIはこう動く 本誌が予測する5大トレンド