CGI(Computer Generated Imagery)で写真のようなリアルな画像をゼロから作る(困難でコストもかかる)にせよ、フォトショップをマスターして既存の画像を違和感なく修正するにせよ、写真や動画の偽造には手間がかかる。
だがいまでは違う。AI生成画像の出現により、画像や動画を修正して本物そっくりに仕上げるのは誰にとっても簡単になった。MITテクノロジーレビューのウィル・ナイト上級編集者は先日、既製ソフトウェアを使ってテッド・クルーズ上院議員のフェイク動画を作成した。動画には少し不自然な部分もあったが、改善されるのも時間の問題だろう。
同じようなテクノロジーを使って、「ディープフェイク」と呼ばれる動画や写真が生成されている。ディープフェイクは真実を歪め、視聴者を混乱させ、既存の文章ベースのフェイクニュースよりも遥かに大規模な意見の対立を招く可能性を持つ。
20年にわたってフェイク画像を見破り続けてきたダートマス大学のハニー・ファリド教授(コンピューター科学)は、こうしたディープフェイクに懸念を示す。「私たちはまだ(ディープフェイクに対する)準備が整っていません」。だがファリド教授は、問題に対する人々の意識の高まりと新しいテクノロジーの発展により、本物の画像と偽造された創作物との違いが見分けやすくなるのではないか、との期待を持っている。
ファリド教授によると、画像を見分けるためには主に2つの方法があるという。1つは、画像に対する修正の跡を見つける方法だ。画像フォレンジック(鑑定)の専門家はコンピューターを用いた手法により、ピクセルやメタデータが改変されていないかどうかを見つけだす。たとえば、物理法則に反した影や反射を探したり、画像ファイルが何回圧縮されたかをチェックし、そのファイルが複数回保存されたかどうかを見分けたりといった作業をする。
もう1つのより新しい手法は、その画像が撮影された瞬間の整合性を検証するものだ。これは、撮影者がデバイスの位置データやタイム・スタンプを改ざんしようとしていないことを証明するために、いくつものチェックが必要となる。カメラの座標、時間帯、高度、近くのWi-Fiネットワークなどはすべてお互いの裏付けとなっているか、画像の光の屈折は3次元的な風景と一致しているか、あるいは誰 …
- 人気の記事ランキング
-
- AI means the end of internet search as we’ve known it 「ググる」時代の終わり、 世界の知識を解き放つ 生成AI検索がもたらすもの
- Promotion Innovators Under 35 Japan × CROSS U 無料イベント「U35イノベーターと考える研究者のキャリア戦略」のご案内
- 10 Breakthrough Technologies 2025 MITTRが選んだ 世界を変える10大技術 2025年版
- Driving into the future 「世界を変える10大技術」の舞台裏、2024年の誤算とは?
- Anthropic’s chief scientist on 5 ways agents will be even better in 2025 アンソロピック主任科学者が語る「AIエージェント」4つの進化