KADOKAWA Technology Review
×
Prediction Models Gone Wild: Why Election Forecasts and Polls Were So Wrong

予測モデル大ハズレ:なぜ選挙予想と世論調査はこんなに違ったのか?

世論調査でクリントンがリードしていたため、リアルタイムのデータでも同じように表示してしまった。それが報道機関の失敗だ。 by Michael Reilly2016.11.10

火曜日の午後、バイス・ニュースを見た人やスレートで選挙報道をチェックしていた人はヒラリー・クリントンが ほぼ確実にアメリカ初の女性大統領になると思っただろう。

最初、どちらのメディアも「ボートキャスター(VoteCastr)」というスタートアップ企業から得たリアルタイムデータをストリーミング配信していた。ボートキャスターは史上初めてアメリカに「選挙の展開」を伝える企業と自称している。ボートキャスターが最後に予測したのは火曜の夜9時頃。クリントンがペンシルベニア州、オハイオ州、フロリダ州、ウィスコンシン州、アイオワ州で勝利すると予測した。しかし結果はどの州もドナルド・トランプが勝利を掴んだ。

ボートキャスターに限った話ではない。世論調査、人口統計、過去のデータに基づく多くの選挙予想も同様に大きく予想を外した。たとえばニューヨーク・タイムズ紙の予測モデルはクリントンの 勝率を85%と予測し、選挙予測サイトとして定評のある「ファイブサーティエイト」はクリントンの勝率を 72%と予測した。

原因は、予測の参考にしていた世論調査結果が現実とかけ離れていたか、少なくとも誤差の範囲には収まる予測のブレが一因だ(クリントンは得票数では勝ったので「世論調査は正しかった、ただ選ぶ勝者を間違えただけだ」で済むかもしれない)。アメリカ国内の白人労働者階級がいかに強いかをよく理解していなかったことも、今回の結果に繋がった一因かもしれない。誰を支持しているのか聞かれても、 正直に答えられなかったのだ。クリントン陣営が「ファイアウォール」と位置付けた州をすべて安全圏と見ていたことは間違いだった。トランプ陣営のデータチームはトランプの勝率を5分の1と分析していた

しかしボートキャスターのミスは、選挙日の欠陥のある技術的性能の問題を別にすれば、唯一、断定してしまったことだ。ボートキャスターにはジョージ・W・ブッシュとオバマ陣営で働いていたデータ分析のプロがいる。彼らは期日前投票、有権者のアイデンティティ、出口調査に細心の注意を払い、以前は利用できなかった選挙中のリアルタイム表示を可能にした。これはデータ主導型の選挙サービスとして最先端だった。

しかし、ボートキャスターは不備のある、不完全な選挙追跡調査によって、結果的に他のサービスとほとんど変わらないと自ら証明してしまった。

(関連記事:Politico, FiveThirtyEight, The New York Times, Bloomberg

人気の記事ランキング
  1. Forget dating apps: Here’s how the net’s newest matchmakers help you find love 出会い系アプリはもううんざり、「運命の人」探す新ネット文化
  2. Laptops alone can’t bridge the digital divide そしてそれはゴミになった 「一人1台のパソコン」の 失敗から得られた教訓
  3. How tackling tech’s diversity challenges can spur innovation デューク大のコンピューター科学者はなぜ「DEI」を学ばせるのか?
タグ
クレジット Photograph by Jewel Samad | Getty
マイケル レイリー [Michael Reilly]米国版 ニュース・解説担当級上級編集者
マイケル・レイリーはニュースと解説担当の上級編集者です。ニュースに何かがあれば、おそらくそのニュースについて何か言いたいことがあります。また、MIT Technology Review(米国版)のメイン・ニュースレターであるザ・ダウンロードを作りました(ぜひ購読してください)。 MIT Technology Reviewに参加する以前は、ニューサイエンティスト誌のボストン支局長でした。科学やテクノロジーのあらゆる話題について書いてきましたので、得意分野を聞かれると困ります(元地質学者なので、火山の話は大好きです)。
日本発「世界を変える」35歳未満のイノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を発信する。

記事一覧を見る
人気の記事ランキング
  1. Forget dating apps: Here’s how the net’s newest matchmakers help you find love 出会い系アプリはもううんざり、「運命の人」探す新ネット文化
  2. Laptops alone can’t bridge the digital divide そしてそれはゴミになった 「一人1台のパソコン」の 失敗から得られた教訓
  3. How tackling tech’s diversity challenges can spur innovation デューク大のコンピューター科学者はなぜ「DEI」を学ばせるのか?
MITテクノロジーレビュー[日本版] Vol.5
MITテクノロジーレビュー[日本版] Vol.5Cities Issue

新型コロナのパンデミックによって激変した都市生活は、ポストコロナでどう変わるのか? 都市部への人口集中が世界で加速する中、環境、災害、貧困といった負の側面をテクノロジーは解決できるのか? 多様な人々が集まり、化学反応が起きるイノベーションの集積地としての役割を都市は今後も果たし続けるのか? 世界の豊富な事例と識者への取材を通して、新しい都市の未来像を描く。

詳細を見る
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る