KADOKAWA Technology Review
×
CO2排出量は車の5倍、力任せの深層学習は環境に悪すぎる
Dean Mouhtaropoulos | Getty; edited by MIT Technology Review
人工知能(AI) Insider Online限定
Training a single AI model can emit as much carbon as five cars in their lifetimes

CO2排出量は車の5倍、力任せの深層学習は環境に悪すぎる

深層学習を使った価値あるAI研究は莫大な計算資源を必要とし、大量の二酸化炭素を排出する。学術界と産業界の大きなギャップも問題だ。 by Karen Hao2019.08.27

人工知能(AI)産業はよく石油産業に例えられる。いったん採掘され、精製されると、データは石油のようにとても儲かる商品になる。今日、この比喩はもっと大きな意味を持つものになりそうだ。化石燃料と同様、深層学習のプロセスは環境にかなり大きな影響を与えるからだ。

マサチューセッツ大学アマースト校の研究チームは、一般的な大規模AIモデルの訓練について、ライフ・サイクル・アセスメント(LCA:製品やサービスのライフサイクル全体に関する環境影響評価)を実施した(論文はこちら)。その結果、大規模AIモデルの訓練は、二酸化炭素換算量で約284トン以上を排出することが明らかになった。平均的なアメリカ車が耐用年数内に放出する炭素量(車両の生産を含む)のほぼ5倍に相当する値だ。

AI研究者は以前からうすうす気づいてはいたものの、衝撃的な値である。「おそらく、私たちの多くはこれまで抽象的に漠然と捉えていたと思います。発表された数字は問題の深刻さを示しています」。スペインのア・コルーニャ大学のコンピュータ科学者であるカルロス・ゴメス・ロドリゲス准教授はこう話す(同准教授は今回の研究には関わっていない)。「私自身も、二酸化炭素の排出について一緒に議論した研究者も、環境への影響がそれほど重大だとは思っていませんでした」。

自然言語処理の二酸化炭素排出量を調査

この論文では、自然言語処理(NLP)モデルの訓練プロセスを重点的に検証している。 NLPは、機械に人間の言語を教え、処理させることに特化したAIのサブ分野である。過去2年間、NLPの研究コミュニティは、機械翻訳、文章完成法、その他の標準的なベンチマーク・タスクにおいて、いくつかの著しい成果を上げている。たとえば、オープンAI(OpenAI)の有名なモデル「GPT-2」は、説得力のあるフェイクニュース記事を書くことに卓越している。

だが、精度の高いNLPには、インターネット上から収集した大量の文章のデータセットを使った、より大規模なモデルの訓練が必要になる。計算コストが高く、極めて大きなエネルギーを消費して …

こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。
人気の記事ランキング
  1. AI reasoning models can cheat to win chess games 最新AIモデル、勝つためなら手段選ばず チェス対局で明らかに
  2. This artificial leaf makes hydrocarbons out of carbon dioxide 人工光合成が次段階へ、新型人工葉が炭化水素合成に成功
  3. Everyone in AI is talking about Manus. We put it to the test. ディープシークの衝撃再び? 話題の中国製AIエージェントを試してみた
MITTRが選んだ 世界を変える10大技術 2025年版

本当に長期的に重要となるものは何か?これは、毎年このリストを作成する際に私たちが取り組む問いである。未来を完全に見通すことはできないが、これらの技術が今後何十年にもわたって世界に大きな影響を与えると私たちは予測している。

特集ページへ
日本発「世界を変える」U35イノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を発信する。

特集ページへ
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る