生まれたばかりの小鹿は、誕生して10分以内に立つことができる。そして7時間以内には、歩くことができる。この2つの重要な節目の間に、小鹿はとてもかわいらしく、必死に足をばたつかせて歩き方を覚える。
これが、人工知能(AI)で駆動するロボット工学の裏にある考え方だ。自動運転車などの自律型ロボットはすでに馴染みのある概念だが、自律的に学習するロボットは、まだ願望でしかない。試行錯誤を通じてロボットに動きを学習させる既存の強化学習アルゴリズムは、まだ大部分を人間の介入に頼っている。ロボットが倒れたり、訓練の環境の外へ出たりするたびに、拾い上げて正しい位置に戻す人が必要になる。
グーグルの研究チームによる新たな研究で、人間の助けなしに動くことを学習するロボットへ向けた重要な進展が見られた。現在の最先端技術のアルゴリズムを微調整するだけで、数時間以内に、四足ロボットに前後への歩行、左右に曲がることを完全に独力で学習させることに成功した。
今回の研究は、1年前の研究を基にしている。当時、グーグルの研究グループは初めて、現実世界でロボットに学習をさせる方法を見つけ出した。強化学習は一般的にシミュレーションで実施される。バーチャルなドッペルゲンガー(生霊)のようなロボットが、バーチャルなドッペルゲンガー的な環境の中を、アルゴリズムが安全に機能し、十分にエラーに強くなるまで、激しく動き回るのだ。その後、物理的なロボットにそのアルゴリズムをインポートする。
最初にシミュレーションを使う方法は、試行錯誤の …
- 人気の記事ランキング
-
- This Nobel Prize–winning chemist dreams of making water from thin air 空気から水を作る技術—— ノーベル賞化学者の夢、 幼少期の水汲み体験が原点
- Text-to-image AI models can be tricked into generating disturbing images AIモデル、「脱獄プロンプト」で不適切な画像生成の新手法
- The paints, coatings, and chemicals making the world a cooler place 数千年前の知恵、現代に エネルギー要らずの温暖化対策
- Quantum navigation could solve the military’s GPS jamming problem ロシアGPS妨害で注目の「量子航法」技術、その実力と課題は?