KADOKAWA Technology Review
×
【4/24開催】生成AIで自動運転はどう変わるか?イベント参加受付中
AIが教えるロボット新技能 二足歩行で走る、跳ぶ「キャシー」
Hybrid Robotics via YouTube
How AI taught Cassie the two-legged robot to run and jump

AIが教えるロボット新技能 二足歩行で走る、跳ぶ「キャシー」

二足歩行の「キャシー(Cassie)」は、強化学習によって走行や跳躍などの動作を習得したロボットだ。強化学習は、ロボットがこれまでに挑戦したことのない新しいタスクに取り組むのに役立つ。 by Rhiannon Williams2024.03.19

ボストン・ダイナミクス(Boston dynamics)のロボットが走ったり、ジャンプしたり、パルクールをしたりする見事な動画を見たことがある人は、ロボットは驚くほど機敏になったという印象を持っているかもしれない。実際には、このようなロボットは依然として手作業でコーディングされており、これまでに遭遇したことのない新しい障害物に対処するのには苦戦している。

しかし、ロボットに動きを教える新しい方法を使えば、人間が学習して不測の事態に適応するのと同じように、ロボットも試行錯誤を通じて新しいシナリオに対処できるようになるかもしれない。

研究者たちは、強化学習と呼ばれる人工知能(AI)手法を使い、「キャシー(Cassie)」というニックネームの二足歩行ロボットが、個々の動作について明確に訓練されることなく、さまざまな地形を400メートル走ったり、立ち幅跳びや高跳びをしたりできるようにした。強化学習は、AIが目的を遂行しようとするときにAIに報酬またはペナルティを与えることで機能する。この場合、強化学習は、新しいシナリオに直面したとき、従来のモデルのようにフリーズするのではなく、一般化して対応するようロボットに教えた。

「私たちは、ロボットの敏捷性の限界に挑戦したかったのです」。未査読のこのプロジェクトに携わったカリフォルニア大学バークレー校の博士課程生であるリー・チョンユは話す。「ハイレベルな目標は、人間が行うようなあらゆる種類のダイナミックな動作をロボットに学習させることでした」

研究チームは、シミュレーションを使ってキャシーを訓練した。このアプローチにより、ロボットが学習するのにかかる時間が数年から数週間に劇的に短縮され、さらなるファインチューニング(微調整)なしに実世界で同じスキルを実行できるようになった。

まず、キャシーを制御するニューラル・ネットワークに、その場でジャンプする、前へ歩く、転倒せずに前へ走るといった簡単なスキルをゼロから習得させる訓練を実施した。その際、人間から収集したモーションキャプチャー・データや、望ましい動きを示すアニメーションなどの動作を見せ、模倣するように促した。

第一段階が完了すると、研究チームはモデルに新しいコマンドを与え、ロボットに新しい動作スキルを使ってタスクを実行するよう促した。シミュレーション環境でロボットが新しいタスクをうまくこなせるようになると、「タスクのランダム化」と呼ばれる手法で、ロボットが訓練されたタスクを多様化させた。

これにより、予期せぬシナリオへのロボットの対応力が各段に強化された。たとえば、ロボットはリードで横に引っ張られた状態でも、安定した走行を維持することができた。「私たちは、ロボットが、これまで観察してきたことを活用し、現実の世界に素早く適応できるようにしました」とリーは言う。

キャシーは追加訓練を必要とすることなく、400メートル走を2分34秒で完走し、走り幅跳びで1.4メートルを跳んだ。

研究者たちは現在、このような手法を、カメラを搭載したロボットの訓練にどのように使えるかを研究しようとしている。キャシーの開発に貢献したが、今回のプロジェクトには関わっていないオレゴン州立大学のアラン・ファーン教授(コンピューター科学)によると、それは目隠しで動作を完了させるよりも難しいという。

「この分野にとっての次の大きなステップは、実際の作業を行い、活動を計画し、足と地面との間の相互作用だけではない方法で実際に物理的な世界と相互作用する人型ロボットです」とファーン教授は言う。

人気の記事ランキング
  1. Why it’s so hard for China’s chip industry to become self-sufficient 中国テック事情:チップ国産化推進で、打倒「味の素」の動き
  2. How thermal batteries are heating up energy storage レンガにエネルギーを蓄える「熱電池」に熱視線が注がれる理由
  3. Researchers taught robots to run. Now they’re teaching them to walk 走るから歩くへ、強化学習AIで地道に進化する人型ロボット
リアノン・ウィリアムズ [Rhiannon Williams]米国版 ニュース担当記者
米国版ニュースレター「ザ・ダウンロード(The Download)」の執筆を担当。MITテクノロジーレビュー入社以前は、英国「i (アイ)」紙のテクノロジー特派員、テレグラフ紙のテクノロジー担当記者を務めた。2021年には英国ジャーナリズム賞の最終選考に残ったほか、専門家としてBBCにも定期的に出演している。
10 Breakthrough Technologies 2024

MITテクノロジーレビューは毎年、世界に真のインパクトを与える有望なテクノロジーを探している。本誌がいま最も重要だと考える進歩を紹介しよう。

記事一覧を見る
人気の記事ランキング
  1. Why it’s so hard for China’s chip industry to become self-sufficient 中国テック事情:チップ国産化推進で、打倒「味の素」の動き
  2. How thermal batteries are heating up energy storage レンガにエネルギーを蓄える「熱電池」に熱視線が注がれる理由
  3. Researchers taught robots to run. Now they’re teaching them to walk 走るから歩くへ、強化学習AIで地道に進化する人型ロボット
気候テック企業15 2023

MITテクノロジーレビューの「気候テック企業15」は、温室効果ガスの排出量を大幅に削減する、あるいは地球温暖化の脅威に対処できる可能性が高い有望な「気候テック企業」の年次リストである。

記事一覧を見る
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る