フラッシュ2022年3月9日
-
大阪大学、物理システムを低コストで制御するAIを開発
by MITテクノロジーレビュー編集部 [MIT Technology Review Japan]大阪大学の研究チームは、ロボットやドローン、自動車といった物理システムを制御し、さまざまなタスクを実行するための機能を、低コストで学習する人工知能(AI)技術を開発した。数値実験では自律型移動ロボットの制御において、約200種類のタスクを一度に学習するシミュレーションを実行し、従来法に比べてメモリー消費量を24分の1に削減できた。
従来の方式では、センサー情報から物理システムの制御情報を生成するためには、タスクごとに学習モデル(ニューラル・ネットワーク)を用意する必要がある。研究チームは、さまざまなタスクをベクトルに変換する学習モデルを構築し、得られたベクトルをセンサー情報とともに学習モデルに入力して、制御情報を生成するようにした。
同チームが発案した手法では、タスクの数に関わらず、タスクをベクトルに変換する学習モデルと、制御情報を生成する学習モデルのみを訓練すればよいことになる。そのため、従来よりもメモリー消費の削減と、学習効率の向上が期待できる。同研究成果は3月8日に、IEEEロボティクス・アンド・オートメーション・レターズ(IEEE Robotics and Automation Letters)に掲載された。
(中條)
-
- 人気の記事ランキング
-
- Stratospheric internet could finally start taking off this year グーグルもメタも失敗した 「成層圏ネット」再挑戦、 2026年に日本で実証実験
- Promotion Emerging Technology Nite #36 Special 【3/9開催】2026年版「新規事業の発想と作り方」開催のお知らせ
- The first human test of a rejuvenation method will begin “shortly” ハーバード大教授主導の 「若返り治療」初の試験へ、 イーロン・マスクも関心
- Microbes could extract the metal needed for cleantech 微生物で「老朽鉱山」再生、バイオマイニングは金属需要に間に合うか
- What’s next for EV batteries in 2026 米国後退、加速する中国支配 EVバッテリー市場、 2026年はどう動く?
