フラッシュ2022年10月11日
-
理研など、巨大量子系シミュレーション用の量子回路設計法を構築
by MITテクノロジーレビュー編集部 [MIT Technology Review Japan]理化学研究所、キュナシス(QunaSys)、大阪大学の共同研究チームは、「リープ-ロビンソン限界(Lieb-Robinson bound)」を用いることで、量子力学に基づく大規模な物理系の時間変化(以降、「大規模な量子系のダイナミクス」)を高精度に計算する量子回路の効率の良い設計法を構築した。リープ-ロビンソン限界は、物理的に自然な仮定の下で、情報の伝播する速度限界を与える理論である。
研究チームは今回、量子回路で再現する量子系のダイナミクスの誤差の指標を表す「コスト関数」を効率よく計算するために、「リープ-ロビンソン限界」に着目。大規模な量子系の量子回路を設計するためのコスト関数を、量子系の時間変化の情報が伝播し得る小さな範囲の小規模な量子系のコスト関数で計算できるという性質を明らかにした。
さらに、具体的検証として、物性分野で最も単純な模型である「1次元ハイゼンベルグ模型」に対するシミュレーションで、数十キュービット(量子ビット)の量子コンピューターにおける本手法の挙動を、古典コンピューターで再現。従来手法と比べて、同じゲート数で約100倍精度よく量子系のダイナミクスを計算できることを確認した。
大規模な量子系のダイナミクスのシミュレーションは古典コンピューターでは実行困難であり、量子コンピューターの最も重要なアプリケーションとして注目されている。だが、こうしたダイナミクスを高精度にシミュレートするには複雑な量子回路が必要であり、現在実現している規模の量子コンピューターでは実行できないという問題があった。
今回の研究成果は、オンライン科学雑誌「PRXクァンタム(PRX Quantum)」に10月5日付けで掲載された。
-
- 人気の記事ランキング
-
- Inside the tedious effort to tally AI’s energy appetite 動画生成は別次元、思ったより深刻だったAIの電力問題
- Promotion Call for entries for Innovators Under 35 Japan 2025 「Innovators Under 35 Japan」2025年度候補者募集のお知らせ
- When AIs bargain, a less advanced agent could cost you 大規模モデルはやっぱり強かった——AIエージェント、交渉結果に差
- AI copyright anxiety will hold back creativity 「生成AIはコピー機」 という主張から考える 創造性の原理
- These new batteries are finding a niche ナトリウム電池、ニッチ分野で存在感 スクーター、送電網などで