KADOKAWA Technology Review
×
10/9「生成AIと法規制のこの1年」開催!申込み受付中
AIによるファクトチェック、「史上最大の研究」でも頼りない理由
Ms. Tech
ニュース Insider Online限定
Even the best AI for spotting fake news is still terrible

AIによるファクトチェック、「史上最大の研究」でも頼りない理由

フェイクニュースばかり撒き散らしているニュースサイトはどこか? 従来のような人力での評価に頼らず、人工知能によってニュース・ソースの「事実性」を評価する研究が進んでいる。「史上最大規模」という研究からは課題も見えてきた。 by Karen Hao2018.10.12

人工知能(AI)をフェイクニュース問題の解決に活用すると議会で約束したフェイスブックのマーク・ザッカーバーグ最高経営責任者(CEO)は、その方法について多くを語らなかった。だが新たな研究によって、問題の解決に一歩近づくことができそうだ。

マサチューセッツ工科大学(MIT)、カタール・コンピューティング研究所(QCRI)、ブルガリアのソフィア大学の研究グループは、報道各社の信頼性を予測する方法を研究している。研究では900以上の変数を試しており、この分野ではおそらく史上最大規模の実験となる。研究成果は10月下旬の学会で発表される予定だ。

研究チームは、もっとも精度の高い組み合わせを見つけるために、さまざまな変数の組み合わせで機械学習モデルを訓練した。もっともよい機械学習モデルでは、ニュース・メディアの「事実性」を「低」「中」「高」の3段階に65%の精度で判定できた。

すばらしい成果というにはほど遠い結果だ。だがこの実験は、機械にファクトチェックをゆだねるには何が求められるのか、という重要な問題を明らかにした。研究に参加したQCRIのプレスラフ・ナコフ上級研究員は、この方法によって「フェイクニュース・ソースを自動的に見つけられるようになる」との楽観的な見通しを持っているという。

とはいえ、その実現が簡単だというわけではない。

狂気へのメソッド

2016年の米大統領選挙以来、フェイクニュースに関する研究は爆発的に増加した。主なアプローチは、個別の主張に関するファクトチェック、ねつ造記事の検知、荒らしの追跡、ニュース・ソースの信頼性測定の4つだ。ナコフ上級研究員ら研究グループはこのうち、誤った情報の起源にもっとも近い、ニュース・ソースの信頼性測定に焦点を絞った。ニュース・ソースの信頼性測定はもっとも研究が進んでいない分野でもある。

ニュース・ソースの信頼性を測るためのこれまでの研究では、記事がすでにチェック済みの事実といくつ …

こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。
人気の記事ランキング
  1. Promotion MITTR Emerging Technology Nite #30 MITTR主催「生成AIと法規制のこの1年」開催のご案内
  2. How plants could mine metals from the soil 植物で金属を掘る「ファイトマイニング」に米エネ省が研究投資
  3. How “personhood credentials” could help prove you’re a human online オープンAIやMITが「人間の証明」提唱、AIなりすましに備え
日本発「世界を変える」U35イノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。2024年も候補者の募集を開始しました。 世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を随時発信中。

特集ページへ
MITTRが選んだ 世界を変える10大技術 2024年版

「ブレークスルー・テクノロジー10」は、人工知能、生物工学、気候変動、コンピューティングなどの分野における重要な技術的進歩を評価するMITテクノロジーレビューの年次企画だ。2024年に注目すべき10のテクノロジーを紹介しよう。

特集ページへ
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る