ロボット工学

Machines Can Now Recognize Something After Seeing It Once グーグル・ディープマインド、大量データ不要の深層学習システムを開発

アルゴリズムの学習には通常何千ものサンプルが必要とされる。グーグル・ディープマインドの研究者はその手間の回避方法を見つけた。 by Will Knight2016.11.04

人間は一、二度見ればそれが何かを認識できる。しかし、コンピュータービジョンや音声認識のアルゴリズムは、画像や言葉の習熟に何千ものサンプルが必要だ。

グーグル・ディープマインドの研究者がこの手間を回避する方法を発見した。研究者は深層学習アルゴリズムを巧妙に微調整することで、画像内の物体等をひとつのサンプルだけで認識(分類)する「ワンショット学習」を可能にした。研究チームはタグ付き画像や筆跡、言語を収録した大型データベースで、新方式を実証した。

高精度のアルゴリズムの認識力は信頼できるが、アルゴリズムの構築には多くのデータが必要で、時間もお金もかかる。たとえば、無人自動車が、確実に道路上の個々の自動車を「自動車」という概念でひとくくりに認識するためのアルゴリズムには何千もの実例が必要だ。膨大なデータを収集するのは往々にして非現実的だ。たとえば、自宅でロボットが迷子にならないためには、膨大な時間をかけて家の中を廻り、学習する必要がある。

人工知能を開発するアルファベット(グーグル)の英国子会社グーグル・ディープマインドのオリオル・ビニアル研究員は、深層学習システム(神経回路網の一種で、脳内のニューロンのように相互接続された構成要素の層のそれぞれの感度を調節することで物体を認識する仕組み)に記憶機能を追加した。一般的に、深層学習システムは人工神経網の接続を微調整するために多くの画像が必要だ。

研究チームは