KADOKAWA Technology Review
×
生物工学の可能性を広げる、AIと機械学習によるイノベーション
Chad Hagen
Rewriting what we thought was possible in biotech

生物工学の可能性を広げる、AIと機械学習によるイノベーション

生物工学分野のイノベーター35人は、機械学習、遺伝子療法、遺伝子解析、クリスパー(CRISPR)により新境地を切り開いている。AIの力で、さらに進化させるにはどんなことが必要なのだろうか。 by Marzyeh Ghassemi2022.11.03

すでに耳にしているかもしれない。生物工学のテクノロジーがうまくいきつつある。機械学習と人工知能(AI)は、疾患を抱えている人を判別し(その能力はあなたのかかりつけの医師よりも優れているかもしれない)、診断用の医療チェックリストを作成できるようになった。また、それらを利用して、期待できる治療法に狙いを絞れるようにもなっている。AIモデルは、医薬品の設計や、既存の医薬品の新たな用途の発見に役立つ。自宅では、シリ(Siri)、アレクサ、コルタナ(Cortana)といったAIアシスタントに頼み、医学的な質問に答えてもらったり、あなたの一日について話してもらったりするだけでいいのだ。これらのアシスタントの中には、自宅にあるスマートデバイスから取得した情報にもアクセスできるものもある。例えば、体重計はフィットビット(Fitbit)と連携してあなたの健康状態をチェックできたりする。

このような現実が自分が住んでいる世界ではないような感じがするのはどうしてだろうと思ってはいないだろうか。AIは電気に例えられてきた。世界を動かす新たな燃料としてだ。だが、電気で起きたことのように、バイオテクノロジーにおいてAIの展開は一様なものになっていない。実用的な電力システムは1880年代に導入され、1920年代までに米国のほとんどの市町村に電力会社から電気が届いた。だが、1936年に議会が農村電化事業団を設立するまでは、米国の地方の90%で電力が不足していた。今日のAIに関しても同じような不均衡な状況を目の当たりにしている。

MLとAIが現在直面している最大の課題は倫理だ。モデルは、特定のことを実行し、行間を読むことがないように非常に強力に構築されている。言い換えれば、モデルは、訓練データに非常に問題が多いとしても、たいていは最も高速な方法で学習することにより、指示されたことだけをそのとおりに実行するのだ。男性の医師が女性の患者の心臓発作に気づかないことが判明したり、肌の色が黒い患者の酸素濃度が誤って報告されたりすると、AIもそれを学習してしまうのである。このように訓練されたモデルを導入すると、女性やマイノリティの人たちが誤診されてしまう恐れがある。

確立された健康の概念であると考えられていたもの、例えば膝の手術が必要かどうかを判断する方法などを書き換えて改良するテクノロジーを目にするのは面白い。テクノロジーを活用することで、複雑で慢性的に研究が足りていない人間の健康分野にリソースを集中させられる。あるいは、不平等の問題にただ名前を付けるだけのことから、それらの問題を解決することへと進むこともできるのだ。AIモデルにより、社会が人々を見捨てている場所がはっきりとわかれば、そのような人々はより良い選択肢を持つことができる。また、AI研究の再現性とベンチマークにあらためて焦点が当てられていることを見ると希望が湧いてくる。

生物工学において機械学習とAIを広く活用する必要があるのは、健康分野の研究に欠けているところである。画像内の犬を識別することを学習したニューラルネットワークのような成功例は、人々が提供しやすい高品質な画像のラベル付けを活用して築き上げられたものだ。人間の言語を生成させたり翻訳させようとする試みも、特定の言語を話す専門家によって簡単に検証・監査される。

だがむしろ、生物学、健康、医学の多くは、まだまだ基礎研究の段階にある。神経変性疾患の仕組みとは? 本当に重要な環境要因とは何か?人間の健康全体において栄養はどのような役割を担っているのか? これらはまだ分かっていない。健康と生物工学において、機械学習はまた別のより困難な課題を担っている。工学をそれほど必要としないが、科学をもっと必要とする課題だ。

マルジエ・ガセミは、マサチューセッツ工科大学(MIT)助教授。2018年には35歳未満のイノベーター3の1人に選ばれている。

人気の記事ランキング
  1. These scientists used CRISPR to put an alligator gene into catfish ワニの遺伝子を組み込んだ「CRISPRナマズ」が米国で誕生
  2. People are already using ChatGPT to create workout plans チャットGPTはパーソナルトレーナーになるか? 実際に試してみた
  3. Why EVs won’t replace hybrid cars anytime soon トヨタの賭け、EV一辺倒ではなくハイブリッド車を売り続ける理由
  4. What’s next for batteries リチウムイオン以外の選択肢は台頭するか? 23年の電池業界を占う
  5. Inside Japan’s long experiment in automating elder care 高齢者介護を「自動化」する 日本の長い実験
marzyeh.ghassemi [Marzyeh Ghassemi]米国版
現在編集中です。
2023年のテクノロジー大予測

2023年のテクノロジーはどう動くのか? AIから量子コンピューター、宇宙開発、mRNAワクチンまで、重要トレンドをMITテクノロジーレビューが徹底予測。各分野の専門家や有力プレイヤーへの取材をもとに、技術・資金・政策などの多角的な視点で解説する。

記事一覧を見る
人気の記事ランキング
  1. These scientists used CRISPR to put an alligator gene into catfish ワニの遺伝子を組み込んだ「CRISPRナマズ」が米国で誕生
  2. People are already using ChatGPT to create workout plans チャットGPTはパーソナルトレーナーになるか? 実際に試してみた
  3. Why EVs won’t replace hybrid cars anytime soon トヨタの賭け、EV一辺倒ではなくハイブリッド車を売り続ける理由
  4. What’s next for batteries リチウムイオン以外の選択肢は台頭するか? 23年の電池業界を占う
  5. Inside Japan’s long experiment in automating elder care 高齢者介護を「自動化」する 日本の長い実験
MITテクノロジーレビュー[日本版] Vol.9
MITテクノロジーレビュー[日本版] Vol.9量子時代のコンピューティング

グーグルやIBMなどの巨大テック企業からベンチャーまで、世界的な開発競争が加速する「量子コンピューター」を中心に、コンピューティングの動向を取り上げる。

詳細を見る
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る