グーグルのゲノム解析AIツールで遺伝子治療は変わるか?
ハーバード大学やグーグルの研究者たちで構成するチームが、人工知能(AI)の深層学習の手法を使って、ゲノムをより正確に解析できるツールを昨年12月に開発した。こうしたツールを利用して疾患の遺伝的原因の究明が進めば、個人のゲノム情報に基づいてより的確な治療を施せるようになる可能性がある。 by Will Knight2018.04.13
科学者が初めてヒトゲノムの配列を解読してから約15年経ったものの、人間の生命を符号化した膨大な量のデータを読み解くことは依然として手ごわい挑戦のままである。だが、これはまさに機械学習が得意とする種類の問題でもある。
グーグルが提供する「ディープヴァリアント(DeepVariant)」と呼ばれるツールは、最新の人工知能(AI)手法を使用して、シーケンシング・データからより正確な個人のゲノムの図を作成する。
ディープヴァリアントは、ハイスループット・シーケンシングで読み出したデータを、完全なゲノムの図へと変換してくれる。シーケンシング・データ内の小さな挿入や欠失突然変異、単一塩基対突然変異を自動的に識別するのだ。
ハイスループット・シーケンシングは2000年代に広まり、ゲノム・シーケンシングが以前よりも利用しやすくなった。しかし、こうしたシステムを使っても、ゲノム全体の限られた部分について、エラーを含むようなスナップショットしか得られなかった。科学者らにとって、シーケンシング過程の途中で生成された無作為なエラーと、小さな突然変異を区別するのは通常困難な技である。ゲノムの反復が多い部分では特にそうだ。しかしこれらの突然変異は、がんなどの病気に直接関係している可能性があるのだ。
ハイスループット・シーケンシングの読み出しデータを解析するために、「GATK」、「ヴァーディクト(VarDict)」、「フリーベイズ(FreeBayes)」といった多くのツールが提供されている。しかし、これらのソフトウェア・プログラムは通常、比較的単純な統計と機械学習の手法を使用して読み出しのエラーの除外を試み、突然変異を識別する。
「困難な点の1つは、ゲノムのいくつかの難しい箇所にあります。これらの箇所にはそれぞれのツールが強味と弱点を持っています」と、ハーバード公衆衛生大学院の研究科学者であり、ディープヴァリアントの開発に貢献したブラッド・チャップマン博士は話す。「これらの難しい領域は、臨床シーケンシングにとってますます重要になっています。複数の方 …
- 人気の記事ランキング
-
- These AI Minecraft characters did weirdly human stuff all on their own マイクラ内に「AI文明」、 1000体のエージェントが 仕事、宗教、税制まで作った
- The startup trying to turn the web into a database Webをデータベースに変える、新発想のLLM検索エンジン
- 3 things that didn’t make the 10 Breakthrough Technologies of 2025 list 2025年版「世界を変える10大技術」から漏れた候補3つ
- OpenAI’s new defense contract completes its military pivot オープンAIが防衛進出、「軍事利用禁止」から一転