エヌビディアが機械学習の「パラダイムを覆す」新手法を研究中
機械学習アルゴリズムを訓練するには膨大なデータが必要だ。少量のデータで訓練できるようになれば現在のパラダイムはひっくり返る。精度を損なうことなくアルゴリズムを小型化する研究を進めていることをエヌビディアの主任科学者が明かした。 by Yiting Sun2018.02.06
グーグルが1月に「クラウド・オートML(Cloud AutoAI)」と呼ばれる新しいサービスを開始した。機械学習ソフトウェアを開発する上での難所のいくつかを自動化できるというものだ。このプロジェクトに取り組んでいる間、強力なアルゴリズムを訓練するために、グーグルの研究者たちは時に800基ものグラフィック・プロセッサー(GPU)を同時に稼働させなければならなかった。
1つか2つの例を目にしただけでコーヒーカップを識別できる人間と違って、シミュレートされたニューロンを基礎とする人工知能(AI)ネットワークが何らかの物体を識別するには、何万もの例が必要となる。そうした方法で身の回りのあらゆる物を認識するように学習しようとすると想像すれば、AIソフトウェアが膨大な演算能力を必要とする理由が分かってくるはずだ。
…
- 人気の記事ランキング
-
- It’s pretty easy to get DeepSeek to talk dirty 「お堅い」Claude、性的会話に応じやすいAIモデルは?
- Promotion Call for entries for Innovators Under 35 Japan 2025 「Innovators Under 35 Japan」2025年度候補者募集のお知らせ
- Google’s new AI will help researchers understand how our genes work グーグルが「アルファゲノム」、遺伝子変異の影響を包括的に予測
- Namibia wants to build the world’s first hydrogen economy 砂漠の国・ナミビア、 世界初「水素立国」への夢
- What is vibe coding, exactly? バイブコーディングとは何か? AIに「委ねる」プログラミング新手法