フラッシュ2022年2月27日
-
隠れニューラルネットを実装したAIチップ、東工大が開発
by MITテクノロジーレビュー イベント事務局 [MIT Technology Review Event Producer]東京工業大学の研究チームは、深層ニューラル・ネットワーク(Deep Neural Network:DNN)理論の一種である「隠れニューラル・ネットワーク(Hidden Neural Network:HNN)」理論を実装したアクセラレーター・チップを開発した。
自動運転やロボットなどで使われる画像認識では、カメラで撮影した画像・映像をその場で推論・判断するため、消費電力の増大が課題となっている。深層学習ではDNN の構造が複雑化することで計算量が増大し、特にDNNモデルの「重み」といった計算パラメーターをメモリーから読み込む際に電力を消費する。一方、HNNでは重みを学習せず、乱数の初期値のまま固定するため、メモリーからの大量のデータ転送が発生せず、電力消費量を節約できる。HNNでは演算時に「スーパーマスク」と固定の乱数の論理積を取り、このスーパーマスクのデータはメモリから転送する。スーパーマスクのデータは圧縮が可能なため、メモリーからのデータ転送量と電力消費量を節約できる。
研究チームは、TSMCの40nmプロセスでプロトタイプ・チップを試作。寸法は3ミリメートル四方と小さいが4096個の演算器を並列動作させることが可能で、演算効率は世界トップレベルの34.8 TOPS/Wを記録した。研究成果は2月20日開催の「ISSCC2022(国際固体素子回路会議)」で発表された。
(笹田)
-
- 人気の記事ランキング
-
- A tiny new open-source AI model performs as well as powerful big ones 720億パラメーターでも「GPT-4o超え」、Ai2のオープンモデル
- The coolest thing about smart glasses is not the AR. It’s the AI. ようやく物になったスマートグラス、真価はARではなくAIにある
- Geoffrey Hinton, AI pioneer and figurehead of doomerism, wins Nobel Prize in Physics ジェフリー・ヒントン、 ノーベル物理学賞を受賞
- Why OpenAI’s new model is such a big deal GPT-4oを圧倒、オープンAI新モデル「o1」に注目すべき理由