フラッシュ2022年3月15日
-
医用画像から臓器の輪郭をAIで自動抽出、広島大が開発
by MITテクノロジーレビュー編集部 [MIT Technology Review Japan]広島大学の研究チームは、深層学習を使うことで、医用画像から複数の臓器の輪郭を高精度に自動抽出するシステム「Step-wise net」を開発した。臨床において自動輪郭作成が可能になることで、業務の効率化が図れるだけでなく、放射線治療の精度向上が期待できるという。
Step-wise netは2段階の学習を実行する。1段階目では輪郭作成の対象となる臓器周辺領域を抽出し、2段階目で抽出した領域内で臓器の輪郭を高精度に作成する。頭頸部の医用画像で同手法を用いて輪郭を作成し、精度を評価したところ、画像変形技術を用いる非人工知能(AI)の手法はもちろん、従来の深層学習を使う方法よりも、すべての臓器で最も精度が高い結果が得られた。
研究成果は2月6日に国際科学誌「コンピューターズ・イン・バイオロジー・アンド・メディシン(Computers in Biology and Medicine)に掲載された。放射線治療ではCTやMRIなどの医用画像上で腫瘍領域、正常臓器の輪郭を作成する必要がある。また、臨床試験では統一したルールに基づき輪郭作成をする必要があるため、自動輪郭作成ツールの需要は高まっている。
(中條)
-
- 人気の記事ランキング
-
- Why the next energy race is for underground hydrogen 水素は「掘る」時代に? 地下水素は地球を救うか
- Useful quantum computing is inevitable—and increasingly imminent それでもなお、 量子コンピューターが 人類に必要な理由
- Useful quantum computing is inevitable—and increasingly imminent それでもなお、 量子コンピューターが 人類に必要な理由
- The second wave of AI coding is here マシン・プログラミングで 人海戦術に終止符、 AIコーディングに第二の波