フラッシュ2023年2月10日
-
ペロブスカイト太陽電池で高い変換効率と耐久性を達成=京大など
by MITテクノロジーレビュー編集部 [MIT Technology Review Japan]京都大学や理化学研究所などの国際共同研究チームは、スズ-鉛混合系ペロブスカイト薄膜を効果的に表面修飾する手法(パッシベーション法)を新たに開発。スズを含むペロブスカイト太陽電池で22.7%の光電変換効率を達成した。
研究チームは今回、ペロブスカイト薄膜の表面をピペラジンなどのジアミンで処理することで、表面でのプロトン移動反応によりジアンモニウムで構造修飾することが可能であることを発見。さらに、フラーレンのトリカルボン酸誘導体(CPTA)を塗布することで、ペロブスカイト薄膜表面のスズ上に選択的に配位結合できることを確認した。
続いて、これらを組み合わせた相乗的表面修飾を施したペロブスカイト半導体を用いて、太陽電池を作製し、3カ月にわたって特性を評価。最大で22.7%の光電変換効率を得ると同時に、窒素ガス雰囲気下で2000時間後、空気中でも450時間後でも90%上の出力を保つ高い耐久性を実現した。
近年、ペロブスカイト半導体材料を用いた太陽電池が次世代型太陽電池として注目を集めており、ペロブスカイト層の表面の構造修飾技術の開発が活発になっている。研究チームはこれまでにスズ-鉛混合型ペロブスカイト半導体薄膜の上下表面構造修飾法として独自の手法を開発し、世界記録となる23.6%の光電変換効率を実現したが、どのようなメカニズムでペロブスカイト表面の構造修飾が可能になっているのか詳細は分かっていなかった。
今回の研究成果は、国際学術誌アドバンスト・マテリアルズ(Advanced Materials)に2022年12月8日付けでオンライン掲載された。
-
- 人気の記事ランキング
-
- These AI Minecraft characters did weirdly human stuff all on their own マイクラ内に「AI文明」、 1000体のエージェントが 仕事、宗教、税制まで作った
- Promotion MITTR Emerging Technology Nite #31 MITTR主催「再考ゲーミフィケーション」開催のご案内
- The startup trying to turn the web into a database Webをデータベースに変える、新発想のLLM検索エンジン
- 3 things that didn’t make the 10 Breakthrough Technologies of 2025 list 2025年版「世界を変える10大技術」から漏れた候補3つ
- OpenAI’s new defense contract completes its military pivot オープンAIが防衛進出、「軍事利用禁止」から一転