KADOKAWA Technology Review
×

ニューズラインエマージング・テクノロジーの最新情報をお届け。

X線画像から異常を発見、深層学習が一部で医師を上回る結果に
Harlie Raethel | Unsplash
AI Is Continuing Its Assault on Radiologists

X線画像から異常を発見、深層学習が一部で医師を上回る結果に

畳み込みニューラルネットワーク(CNN: convolutional neural network)を使えば、体のいくつかの部位においては、放射線科医よりも正確にX線画像から異常を発見できることが示された。

スタンフォード大学の研究チームは、1万4982件の研究における4万895枚の筋骨格のX線画像データセットを用いて、畳み込みニューラルネットワークを訓練した。同研究チームの論文によると、訓練後の畳み込みニューラルネットワークは、放射線科医よりも正確に、指と手首のX線画像から骨折や骨変性などの異常を検出できたという。だが、肘、前腕、手、上腕、肩の異常を見つける能力は、依然として放射線科医の方が上だった。

放射線科医は絶えず人工知能(AI)から戦いを挑まれており、今回ほど良い結果にならないことも多い。著名なAIの研究者であるジェフリー・ヒントン博士はニューヨーカー誌に対して以前、AIの進化を考慮すれば、医学部は「今すぐ放射線科医の養成を止めるべきだ」と述べた。

 

jackie.snow [Jackie Snow] 2018.01.19, 13:42
MITTRが選んだ 世界を変える10大技術 2025年版

本当に長期的に重要となるものは何か?これは、毎年このリストを作成する際に私たちが取り組む問いである。未来を完全に見通すことはできないが、これらの技術が今後何十年にもわたって世界に大きな影響を与えると私たちは予測している。

特集ページへ
MITテクノロジーレビューは有料会員制サイトです
有料会員になると、毎月150本以上更新されるオリジナル記事が読み放題!
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る