KADOKAWA Technology Review
×
AIによるファクトチェック、「史上最大の研究」でも頼りない理由
Ms. Tech
ニュース Insider Online限定
Even the best AI for spotting fake news is still terrible

AIによるファクトチェック、「史上最大の研究」でも頼りない理由

フェイクニュースばかり撒き散らしているニュースサイトはどこか? 従来のような人力での評価に頼らず、人工知能によってニュース・ソースの「事実性」を評価する研究が進んでいる。「史上最大規模」という研究からは課題も見えてきた。 by Karen Hao2018.10.12

人工知能(AI)をフェイクニュース問題の解決に活用すると議会で約束したフェイスブックのマーク・ザッカーバーグ最高経営責任者(CEO)は、その方法について多くを語らなかった。だが新たな研究によって、問題の解決に一歩近づくことができそうだ。

マサチューセッツ工科大学(MIT)、カタール・コンピューティング研究所(QCRI)、ブルガリアのソフィア大学の研究グループは、報道各社の信頼性を予測する方法を研究している。研究では900以上の変数を試しており、この分野ではおそらく史上最大規模の実験となる。研究成果は10月下旬の学会で発表される予定だ。

研究チームは、もっとも精度の高い組み合わせを見つけるために、さまざまな変数の組み合わせで機械学習モデルを訓練した。もっともよい機械学習モデルでは、ニュース・メディアの「事実性」を「低」「中」「高」の3段階に65%の精度で判定できた。

すばらしい成果というにはほど遠い結果だ。だがこの実験は、機械にファクトチェックをゆだねるには何が求められるのか、という重要な問題を明らかにした。研究に参加したQCRIのプレスラフ・ナコフ上級研究員は、この方法によって「フェイクニュース・ソースを自動的に見つけられるようになる」との楽観的な見通しを持っているという。

とはいえ、その実現が簡単だというわけではない。

狂気へのメソッド

2016年の米大統領選挙以来、フェイクニュースに関する研究は爆発的に増加した。主なアプローチは、個別の主張に関するファクトチェック、ねつ造記事の検知、荒らしの追跡、ニュース・ソースの信頼性測定の4つだ。ナコフ上級研究員ら研究グループはこのうち、誤った情報の起源にもっとも近い、ニュース・ソースの信頼性測定に焦点を絞った。ニュース・ソースの信頼性測定はもっとも研究が進んでいない分野でもある。

ニュース・ソースの信頼性を測るためのこれまでの研究では、記事がすでにチェック済みの事実といくつ …

こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。
人気の記事ランキング
  1. A long-abandoned US nuclear technology is making a comeback in China 中国でトリウム原子炉が稼働、見直される過去のアイデア
  2. Here’s why we need to start thinking of AI as “normal” AIは「普通」の技術、プリンストン大のつまらない提言の背景
  3. AI companions are the final stage of digital addiction, and lawmakers are taking aim SNS超える中毒性、「AIコンパニオン」に安全対策求める声
MITTRが選んだ 世界を変える10大技術 2025年版

本当に長期的に重要となるものは何か?これは、毎年このリストを作成する際に私たちが取り組む問いである。未来を完全に見通すことはできないが、これらの技術が今後何十年にもわたって世界に大きな影響を与えると私たちは予測している。

特集ページへ
日本発「世界を変える」U35イノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を発信する。

特集ページへ
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る