KADOKAWA Technology Review
×
締切 迫る!【1/31まで】ひと月あたり1000円。
お得に購読できるキャンペーン実施中!
天文学者が見落とした太陽系外惑星、深層学習で発見
Daniel Fabrycky | NASA
知性を宿す機械 Insider Online限定
Deep learning has found two exoplanets that human astronomers missed

天文学者が見落とした太陽系外惑星、深層学習で発見

ケプラー宇宙望遠鏡のノイズの多い観測データから、太陽系外惑星が存在する「しるし」を認識するように訓練したニューラル・ネットワークが開発された。観測データから天文学者が見落としていた2つの太陽系外惑星を見つけ出したという。 by Emerging Technology from the arXiv2019.04.05

諸々の恒星の周りを回る惑星の探索は、産業規模に達している。天文学者たちは4000を超える太陽系外惑星を発見しているが、そのうち半分以上はケプラー宇宙望遠鏡からのデータを利用して発見された。ケプラーは、太陽系外惑星探索のために作られた地球周回軌道上の天文観測衛星だ。

2009年に打ち上げられたケプラーは、固定された視野を数ヶ月間観察し、惑星が前を通過することで生じる恒星の明るさのわずかな周期的変化を探す。

だが2012年にこのミッションはトラブルに陥った。ケプラーの4つのリアクションホイールのうち1つが故障したのだ。リアクションホイールは、探査機の姿勢を制御し、特定の方向を正確に向かせる役割を果たす。2013年には2つめのホイールが故障し、ミッションは危機に陥った。

エンジニアたちは解決策として、故障したケプラーを用いて、低精度でノイズの多いデータの収集を続ける方法を考案した。ミッションのこの部分はK2と名付けられた。天文学者たちはK2のデータからも新たな太陽系外惑星を発見し続けたが、発見率はそれまでよりもはるかに低くなった。

しかし、このことが興味深い可能性につながった。太陽系外惑星のしるしは依然として存在していることは確かだが、増えたノイズのせいで見落とされていた。もしノイズを体系的に取り除いて、結果として得られた信号を調べる方法を見つけられたら、見落とされた太陽系外惑星が見つかるかもしれない。

そこで登場したのが、テキサス大学オースティン校のアン・ダッティーロたちだ。ダッティーロらは、K2のデータを自動的に分析できる「アストロネットK2(AstroNet-K2)」という名の深層学習ニューラル・ネットワークを開発した。これによりK2データのマイニング処理が劇的に高速化し …

こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。
購読キャンペーン実施中
日本発「世界を変える」35歳未満のイノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を発信する。

記事一覧を見る
MITテクノロジーレビュー[日本版] Vol.5
MITテクノロジーレビュー[日本版] Vol.5Cities Issue

新型コロナのパンデミックによって激変した都市生活は、ポストコロナでどう変わるのか? 都市部への人口集中が世界で加速する中、環境、災害、貧困といった負の側面をテクノロジーは解決できるのか? 多様な人々が集まり、化学反応が起きるイノベーションの集積地としての役割を都市は今後も果たし続けるのか? 世界の豊富な事例と識者への取材を通して、新しい都市の未来像を描く。

詳細を見る
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る