人工知能(AI)は画像に含まれる物体を認識するのに優れているが、その能力を台無しにさせるのもまた容易だ。人間の目には見えない静的ノイズの中に線や塗りをちょっと加えるだけで、画像認識システムを困らせることができてしまう。ときにはそれが致命的な影響を与えることもある。たとえば、一時停止の標識にステッカーを貼り付けことで、自動運転自動車に「制限時速70キロ」と誤認させられる。ステッカーを道路に貼り付ければ、テスラの自動運転自動車を対向車線へ誘導もできる(同じ技術で監視国家から人々の保護もできるので、いい面も悪い面もある)。
これらは「敵対的サンプル(adversarial examples)」と呼ばれ、研究者らは現在、AIシステムを敵対的サンプルから守る方法を開発しようと争って研究を重ねている。だが、この分野における最初期からの研究者の1人であるイアン・グッドフェロー博士と、グーグル・ブレイン(Google Brain)、プリンストン大学の研究者グループは昨年のある論文で、最近の研究成果はあまりに理論に偏っており、要点を外していると主張した …
- 人気の記事ランキング
-
- Inside the controversial tree farms powering Apple’s carbon neutral goal 1日100万本の植林が生む 広大な「緑の砂漠」 ブラジル・セラードの光と影
- Three big things we still don’t know about AI’s energy burden ようやく出てきた生成AIの電力消費、残された3つの疑問
- Inside the controversial tree farms powering Apple’s carbon neutral goal 1日100万本の植林が生む 広大な「緑の砂漠」 ブラジル・セラードの光と影
- Synthesia’s AI clones are more expressive than ever. Soon they’ll be able to talk back. 「不気味の谷」越え近づく? 進化した最新AIクローン技術