KADOKAWA Technology Review
×
Facebook Releases Code to Let Computers See More Like Us

フェイスブックの偉業
画像認識アルゴリズムに革命

画像内の物体を個別に認識するフェイスブックのテクノロジーにより、Photoshopのような画像編集ソフトや、ポケモンGOのような仮想現実アプリが大きく進化する可能性がある。 by Will Knight2016.08.26

視覚的に世界を認識するには、たとえばネコを見て認識するだけでは不十分だ。どこまでがネコで、どこからが背景かを認識する必要がある。

フェイスブックが開発し、25日に他の研究者にも公開されたコンピューター・ビジョン・アルゴリズムによって、コンピューターは視覚的に世界を認識できるようになった。フェイスブックのアルゴリズムは、画像に何があるかだけでなく、特定の物体に対応する形状も認識できる。簡単なトリックで実現しているように思えるが、正確に認識するようにコンピューターをプログラムするのはとても困難で、従来のビジョン・システムの性能を上回るテクノロジーだ。

現時点では、フェイスブックのアルゴリズムは、単なる研究ツールだ。しかし、将来的には、多くの重要なアプリケーションを生み出すかもしれない。

  • Photoshopのような画像処理プログラムが自動的に背景を変えたり、写真内の人物だけを明るくしたりする
  • 目の不自由なユーザーに、コンピューターの画面の内容を音声で説明する
  • ポケモンGoのような拡張現実ゲームをさらにリアルにするため、ピカチューがよじ登れる物体を認識する
Different objects are highlighted in images fed through Facebook’s algorithm.
フェイスブックのアルゴリズムによって、画像内の異なる物体が色分けされている

コンピューター・ビジョンの分野が最近飛躍的に進歩しているといっても、主に進歩しているのはある画像に何が写っているか、場面全体はどうなっているか、の認識だった。しかし、研究者はより詳細な画像認識に目を向け始めており、機械を、全体的にさらに知的にしようとしている。(「The Next Big Test for AI: Making Sense of the World」)。

研究に関わったフェイスブックのラリー・ジトニック研究部長は、「コンピューターにとって最も難しいことのひとつは、現実(実際にそこにあるもの)を理解することです。画像内の物体を個別に認識することは、場面推論にとって欠かせない要素技術なのです」

ジトニック研究部長によると、アルゴリズムは最終的に、フェイスブックに掲載される画像内の製品を自動的に区別するシステムの開発に使われたり、さらにリアルな拡張現実アプリを構築したりするために使われる、という。

「もしユーザーが子犬を仮想的に部屋に置きたいと思ったら(ポケモンGOのように単に部屋の画像に重ね合わせるのではなく)、ユーザーは子犬をソファーの上に、しかもソファーの特定の場所に置きたいと実際には思いますよね」

多くのサンプルで画像を分類するようにニューラルネットワークを訓練する大規模なシミュレーションにより、この数年間でコンピューター・ビジョンは大きく進展した。このような「深層学習」システムは一般的に、色や模様など、さまざまな特徴を認識するが、物体の輪郭は必ずしも理解できない。

フェイスブックのアルゴリズムは、この種の「画像分割」を実現するために、3つのニューラルネットワークを組み合わせた。はじめに2つのネットワークで個々のピクセルがある物体の一部なのか他の物体の一部なのかを見極める。最後にもうひとつのネットワークで、特定の物体が何であるのかを見極める。

コンピューター・ビジョンを専門にするUCLAのステファノ・ソアト教授は、研究は「非常に意義深く」また画像分割は難易度が高く、実現できていなかったため、今後たくさんのアプリケーションができるだろうという。

「どの2歳児でも、画像内の物体を指さしたり、輪郭をトレースしたりできます。しかし、だからといって簡単にできることではないのです。何百万年にわたる進化と、脳の半分の機能を動員してなし得る技なのです」

人気の記事ランキング
  1. These scientists used CRISPR to put an alligator gene into catfish ワニの遺伝子を組み込んだ「CRISPRナマズ」が米国で誕生
  2. People are already using ChatGPT to create workout plans チャットGPTはパーソナルトレーナーになるか? 実際に試してみた
  3. Why EVs won’t replace hybrid cars anytime soon トヨタの賭け、EV一辺倒ではなくハイブリッド車を売り続ける理由
  4. What’s next for batteries リチウムイオン以外の選択肢は台頭するか? 23年の電池業界を占う
  5. Inside Japan’s long experiment in automating elder care 高齢者介護を「自動化」する 日本の長い実験
ウィル ナイト [Will Knight]米国版 AI担当上級編集者
MITテクノロジーレビューのAI担当上級編集者です。知性を宿す機械やロボット、自動化について扱うことが多いですが、コンピューティングのほぼすべての側面に関心があります。南ロンドン育ちで、当時最強のシンクレアZX Spectrumで初めてのプログラムコード(無限ループにハマった)を書きました。MITテクノロジーレビュー以前は、ニューサイエンティスト誌のオンライン版編集者でした。もし質問などがあれば、メールを送ってください。
2023年のテクノロジー大予測

2023年のテクノロジーはどう動くのか? AIから量子コンピューター、宇宙開発、mRNAワクチンまで、重要トレンドをMITテクノロジーレビューが徹底予測。各分野の専門家や有力プレイヤーへの取材をもとに、技術・資金・政策などの多角的な視点で解説する。

記事一覧を見る
人気の記事ランキング
  1. These scientists used CRISPR to put an alligator gene into catfish ワニの遺伝子を組み込んだ「CRISPRナマズ」が米国で誕生
  2. People are already using ChatGPT to create workout plans チャットGPTはパーソナルトレーナーになるか? 実際に試してみた
  3. Why EVs won’t replace hybrid cars anytime soon トヨタの賭け、EV一辺倒ではなくハイブリッド車を売り続ける理由
  4. What’s next for batteries リチウムイオン以外の選択肢は台頭するか? 23年の電池業界を占う
  5. Inside Japan’s long experiment in automating elder care 高齢者介護を「自動化」する 日本の長い実験
MITテクノロジーレビュー[日本版] Vol.9
MITテクノロジーレビュー[日本版] Vol.9量子時代のコンピューティング

グーグルやIBMなどの巨大テック企業からベンチャーまで、世界的な開発競争が加速する「量子コンピューター」を中心に、コンピューティングの動向を取り上げる。

詳細を見る
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る