KADOKAWA Technology Review
×
無料の会員登録で、記事閲覧数が増えます
知性を宿す機械 Amazon and the CIA Want to Teach AI to Watch Us From Space

宇宙から人類をAIで監視
アマゾンとCIAが新構想

衛星画像を機械学習で分析し、建物や道路、ゴミの山をマーキングするプロジェクトを、アマゾンやCIAが始めようとしている。 by Tom Simonite2016.08.26

衛星を運用するデジタルグローブは、アマゾン、CIAのベンチャー部門、半導体メーカーのエヌビディアと共同で、コンピューターが上空から地球を見下ろし、道路、建物、ゴミの山などを認識して自動的に地図を作る構想を実現しようとしている。

共同プロジェクトでデジタルグローブは25日、リオデジャネイロ全体を50cmの解像度で撮影した衛星画像を公開した。約1900平方キロメートルの都市圏にある20万棟の建物の輪郭を手作業で印がつけられている。「スペースネットデータセット」の意図は、機械学習アルゴリズムによる高解像度衛星写真の自動解析を推進することだ。

デジタルグローブによれば、最終的にスペースネットデータセットは高解像度画像で地球上の130万km2(日本の面積は約38万km2)をカバーし、建物の有無以外の情報を付加する。デジタルグローブのデータは現在一般的に利用可能な衛星データよりはるかに精密だ。たとえば米国航空宇宙局(NASA)が提供する衛星データの解像度は通常は数十m程度しかない。アマゾンはスペースネットデータをクラウドコンピューティングサービスで提供する予定で、エヌビディアは機械学習の研究グループにツールを提供し、アルゴリズムをテストし高度化するために使えるようにする。コスミックワークス(CIAのベンチャー部門インクテルの宇宙系子会社)も、プロジェクトを支援する。

Software will be trained to label buildings in satellite images using a dataset of images like this one.
画像データセットで、衛星画像中の建物をラベリングするようソフトウェアを訓練する

「データを利用するには新しいアルゴリズムを開発する必要があります」というのはデジタルグローブのトニー・フレイジャー上級副社長だ。デジタルグローブは4基の衛星を運用しており、米国の諜報機関や人道支援団体、その他関連機関に画像データを提供している。現在、提供先の組織はおおむね手作業で画像からデータを抽出している。

フレイジャー上級副社長によれば、今後はソフトウェアでさまざまなことができる。貧民街の道路や建物の地図を作ったり、公園のベンチや一時停止の標識など、都市のインフラの変化を追跡したり、屋根などの素材を分析したりできる。この種の情報は商業的に価値がある上、地域の健康状態を知ったり、支援プログラムを提供したりするときに役立つだろうとフレイジャー上級副社長はいう。

オープンな衛星画像で収穫量を予測するスタートアップ企業デカルトラブスのマーク・ジョンソンCEOは、新しいデータはさまざまなスタートアップと研究グループに歓迎されるだろう、という。将来的には、都市部での活動から経済的指標を推定したり、ゴミ回収のような公共サービスを改善したりするのに応用できるだろう、と予想する。

スペースネットのモデルはイメージネット(ラベリングされた約100万の画像データベースで、最近の画像認識研究を支えて、精度が飛躍的に高めていることに貢献している)だ(“The Revolutionary Technique that Quietly Changed Machine Vision Forever”参照)。イメージネットで最初に検証されたアイデアに基づいて、グーグルやフェイスブックなどの企業は画像認識テクノロジーを開発してきた。

人気の記事ランキング
  1. As Goldman Embraces Automation, Even the Masters of the Universe Are Threatened ゴールドマン・サックス、 自動化でトレーダー大幅減 3割がエンジニアに
  2. Bitcoin Transactions Get Stranded as Cryptocurrency Maxes Out ビットコイン取引、暗号通貨が上限に達し行き詰まり
  3. Boston Dynamics Has a New “Nightmare-Inducing” Robot ボストン・ダイナミクス、恐怖の倉庫ロボを投資家向けに公開
  4. Data Mining Reveals the Rise of ISIS Propaganda on Twitter ISIS台頭の理由がTwitterデータマイニングで判明
  5. Collection of 13,500 Nastygrams Could Advance War on Trolls 悪口とは何か? 機械学習用に荒らしコメント1万3500件を収集
この記事をシェアしてください!
この記事が気に入ったら
いいね!しよう
トム サイモナイト [Tom Simonite]米国版 サンフランシスコ支局長
MIT Technology Reviewのサンフランシスコ支局長。アルゴリズムやインターネット、人間とコンピューターのインタラクションまで、ポテトチップスを頬ばりながら楽しんでいます。主に取材するのはシリコンバレー発の新しい考え方で、巨大なテック企業でもスタートアップでも大学の研究でも、どこで生まれたかは関係ありません。イギリスの小さな古い町生まれで、ケンブリッジ大学を卒業後、インペリアルカレッジロンドンを経て、ニュー・サイエンティスト誌でテクノロジーニュースの執筆と編集に5年間関わたった後、アメリカの西海岸にたどり着きました。
「機械学習」の記事
人気の記事ランキング
  1. As Goldman Embraces Automation, Even the Masters of the Universe Are Threatened ゴールドマン・サックス、 自動化でトレーダー大幅減 3割がエンジニアに
  2. Bitcoin Transactions Get Stranded as Cryptocurrency Maxes Out ビットコイン取引、暗号通貨が上限に達し行き詰まり
  3. Boston Dynamics Has a New “Nightmare-Inducing” Robot ボストン・ダイナミクス、恐怖の倉庫ロボを投資家向けに公開
  4. Data Mining Reveals the Rise of ISIS Propaganda on Twitter ISIS台頭の理由がTwitterデータマイニングで判明
  5. Collection of 13,500 Nastygrams Could Advance War on Trolls 悪口とは何か? 機械学習用に荒らしコメント1万3500件を収集
ザ・デイリー重要なテクノロジーとイノベーションのニュースを平日毎日お届けします。
公式アカウント