KADOKAWA Technology Review
×
発表!MITテクノロジーレビューが選ぶ
2022年のイノベーター14人。
【12/15 Summit開催】
MIT Technology Review / Adam Gleave
知性を宿す機械 Insider Online限定
Reinforcement-learning AIs are vulnerable to a new kind of attack

強化学習AIに脆弱性、誤動作を引き起こす敵対的攻撃の新手法

ゲームプレイや自動運転など最先端の人工知能(AI)で使われている強化学習に、深刻な脆弱性が発見された。強化学習を使って訓練されたAIは、相手の奇妙な行動によってだまされる可能性があるというのだ。 by Will Douglas Heaven2020.03.10

サッカー・ボットがゴールを狙おうとする。しかし、ゴールキーパーは、シュートをブロックする準備をする代わりに、地面に倒れて足をクネクネさせ始める。 するとストライカーは混乱して奇妙な横向きの小躍りをし、足をジタバタさせ、片方の腕を振り回して倒れこむ。ゴールキーパーの勝ちだ。

これはプロが使う戦術ではないが、深層強化学習により訓練された人工知能(AI)が、これまで考えられていたよりも攻撃に対して脆弱だということを示している。強化学習は「アルファゼロ(AlphaZero)」や「オープンAI ファイブ(OpenAI Five)」など最先端のゲームプレイAIで使用されている技術であり、こうした脆弱性は深刻な結果をもたらす可能性がある。

過去数年間で研究者は、教師つき学習と呼ばれるラベル付きデータを使用して訓練されたAIをダメにする多くの方法を発見した。画像の数ピクセルを変更するなど、AIの入力にわずかな細工をするだけで完全に混乱させることが可能で、たとえばナマケモノの画像をレーシングカーと識別させることができる。こうしたいわゆる敵対的攻撃には確実な対応策はない。

教師あり学習と比較して強化学習は比較的新しい手法であり、まだあまり研究されていない。しかし、強化学習もまた、細工した入力に対して脆弱であることがわかった。強化学習ではさまざまな状況での振る舞いをAIに教えるために、正しいことをしたときに報酬を与える。 AIはやがてポリシーと呼ばれる行動計画を学習する。ポリシーはゲームをプレイするだけでなく、AIに車を運転させたり自動取引システムを実行させたりすることも可能だ。

2017年、ディープマインドに所属するサンディ・ファンらは、古典的なビデオゲーム「ポン(Pong)」をプレイするための強化学習で訓練したAIについて調べた。 そして、ビデオ入力のフレームに単一の不正ピクセルを追加す …

こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。
日本発「世界を変える」35歳未満のイノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を発信する。

記事一覧を見る
MITテクノロジーレビュー[日本版] Vol.8
MITテクノロジーレビュー[日本版] Vol.8脱炭素イノベーション

2050年のカーボンニュートラル(炭素中立)の実現に向けて、世界各国で研究開発が加速する脱炭素技術、社会実装が進む気候変動の緩和・適応策などGX(グリーン・トランスフォーメーション)の最新動向を丸ごと1冊取り上げる。

詳細を見る
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る