Daniel Omeiza ダニエル・オメイザ (31)
自動運転車における「説明可能性」の問題に取り組み、車の動作に関する、視覚および言語ベースの説明を自動生成するモデルを開発している。
ニューラルネットワーク(Neural networks)は、システム設計者でさえ良く理解できないような決定を下すことがよくある。この「説明可能性」という問題のせいで、偏った結果や不正確な結果といった欠陥が修正されにくくなっている。ダニエル・オメイザは、自動運転車における説明可能性の問題解決に取り組んでおり、車が特定の反応を示す理由を、エンジニアや一般ドライバーに「視覚と言語ベースで」説明する技術を開発している。
オメイザの最新の研究は、車の認知と意思決定計画システムをデータ解析する決定木(デシジョンツリー)技術を利用して、車の動作に関する解説(聴覚的説明、運転指示、視覚的グラフなど)を自動生成するというものだ。オメイザのモデルは、さまざまな自律走行車に対応できる柔軟性を備えており、車が過去に記録したデータを使用するか、あるいは走行中の車両行動に関する情報を処理して、もっともらしい説明を生成できる。
オメイザは現在、交通法規をシステムに統合するための作業を進めている。「自動運転車の安全性を高め、人工知能(AI)エンジニアがより効率的にシステムをコーディングできるようにしたい」という願いがオメイザの動機となっている。彼は、自分が開発したモデルによって、AI技術に対する消費者の信頼を高めたいと言う。「深層学習モデルは、『説明なしではシステムを信頼できない』という人から敬遠される場合がありますから」。
(テイト・ライアン・モズリー)
- 人気の記事ランキング
-
- This company is planning a lithium empire from the shores of the Great Salt Lake 来るか米リチウムラッシュ、 水使用10分の1の新技術で 「つるはし」売る企業
- Meet the man building a starter kit for civilization 家もトラクターも自分で作る 元物理学者の農家が始めた 「文明のDIYキット」
- The first new subsea habitat in 40 years is about to launch キッチンもある「海底の家」 40年ぶりの居住施設で 科学者4人が1週間生活へ
- How do our bodies remember? 解説:運動をやめても筋肉は覚えている——復帰が速い科学的理由とは