典型的な自然言語処理モデルの訓練には膨大な計算パワーが必要であり、大量の二酸化炭素を排出する。その量は、米国製セダン車が耐用年数内に放出する炭素量のほぼ5倍に相当する。画像認識モデルの訓練で消費されるエネルギーは、一般的な住宅で消費されるエネルギーの2週間分だ。大手テック企業は1日に複数回、こうしたモデルの訓練を実施している。
現代のコンピューティングではメモリとプロセッサーの間でデータを絶えず転送する必要があり、エネルギーの多くはそのために使用されている。マニュエル・ル・ガロはIBMの研究チームと協力して、より高速でエネルギー効率が高く、しかも高精度な、新しい種類のコンピューティング・アーキテクチャを実現するためのテクノロジーを開発している。
ル・ガロの研究チームは、メモリ自体を使用してデータを処理するシステムを開発した。これまでの研究ですでに、精度と大幅なエネルギー節約の両方を実現できることが示されている。研究チームは最近、従来の方法で実行した場合のわずか1%のエネルギーで処理を完了した。
金融分野から生命科学に至るまでの企業が人工知能(AI)モデルを改善するため絶えず訓練を実施しており、今後もエネルギー需要は急増するだろう。「私たちの手法により、二酸化炭素排出量と、モデルの訓練に費やされるエネルギーは確実に削減され、モデルの高速化とエネルギー効率向上が可能になります」とル・ガロは言う。
- 人気の記事ランキング
-
- Weight-loss injections have taken over the internet. But what does this mean for people IRL? 週1回の注射で痩せる 「驚異の減量薬」 ブームに潜む危険
- Promotion MITTR Emerging Technology Nite #30 MITTR主催「生成AIと法規制のこの1年」開催のご案内
- Escaping Spotify’s algorithm ミックステープ文化の逆襲、 スポティファイで失われた 音楽の楽しみを取り戻す方法
- How plants could mine metals from the soil 植物で金属を掘る「ファイトマイニング」に米エネ省が研究投資
- How “personhood credentials” could help prove you’re a human online オープンAIやMITが「人間の証明」提唱、AIなりすましに備え
タグ | |
---|---|
クレジット | Samuel Trümpy |
著者 | MIT Technology Review編集部 [MIT Technology Review Editors] |