
現在、ほぼすべての電子機器や電気自動車(EV)はリチウムイオン電池で動いている。これらの電池は、金属製のカソード(正極)と通常はグラファイト(黒鉛)製のアノード(負極)の間で荷電粒子(イオン)を移動させることで機能する。
アノードを金属元素の中で最も軽いリチウムで作れば、同じサイズのバッテリーでもはるかに多くのエネルギーを蓄えられることは数十年前から研究者たちの間で知られていた。しかし、リチウムは非常に反応性が高く、通常の電解質(電池内のイオンを運ぶ液体)と相互作用すると、発火のリスクが高まる。こうした危険性を克服するため、研究者たちは液体電解質を固体電解質に置き換える試みを実施してきたが、固体電解質では電池の性能が低下するという問題があった。
チブエゼ・アマンチュク(31歳)は、新しいタイプの電解質を開発した。この電解質は、電池が動作しているときは液体の状態を保ちつつ、発火の原因となる溶媒を一切含まないという特徴を持つ。開発には数カ月にわたる塩の組み合わせの試験が必要だった。最終的に、アマンチュクのチームはリチウム、カリウム、セシウムを組み合わせた電解質を作り出した。この電解質は45°Cで溶けるため、電気自動車や電力網向けのバッテリーに適用可能だと考えられる。現在、彼らはこの融点を0°Cに近づけることを目標に研究を進めている。
アマンチュクによれば、この技術はまだ商業化には至っていない。しかし、彼はこれを「リチウム金属電池の実現という、長年の夢に向けた重要な一歩」と位置付けている。「私たちの研究は、高エネルギー密度で高性能なバッテリーを、安全性を犠牲にすることなく実現できることを示しています」とアマンチュクは話す。
- 人気の記事ランキング
-
- Namibia wants to build the world’s first hydrogen economy 砂漠の国・ナミビア、 世界初「水素立国」への夢
- Promotion MITTR Emerging Technology Nite #33 バイブコーディングって何だ? 7/30イベント開催のお知らせ
- Promotion Call for entries for Innovators Under 35 Japan 2025 「Innovators Under 35 Japan」2025年度候補者募集のお知らせ
- What comes next for AI copyright lawsuits? AI著作権訴訟でメタとアンソロピックが初勝利、今後の展開は?
- Why the US and Europe could lose the race for fusion energy 核融合でも中国が優位に、西側に残された3つの勝機
- Google’s electricity demand is skyrocketing グーグルの電力使用量が4年で倍増、核融合電力も調達へ