典型的な自然言語処理モデルの訓練には膨大な計算パワーが必要であり、大量の二酸化炭素を排出する。その量は、米国製セダン車が耐用年数内に放出する炭素量のほぼ5倍に相当する。画像認識モデルの訓練で消費されるエネルギーは、一般的な住宅で消費されるエネルギーの2週間分だ。大手テック企業は1日に複数回、こうしたモデルの訓練を実施している。
現代のコンピューティングではメモリとプロセッサーの間でデータを絶えず転送する必要があり、エネルギーの多くはそのために使用されている。マニュエル・ル・ガロはIBMの研究チームと協力して、より高速でエネルギー効率が高く、しかも高精度な、新しい種類のコンピューティング・アーキテクチャを実現するためのテクノロジーを開発している。
ル・ガロの研究チームは、メモリ自体を使用してデータを処理するシステムを開発した。これまでの研究ですでに、精度と大幅なエネルギー節約の両方を実現できることが示されている。研究チームは最近、従来の方法で実行した場合のわずか1%のエネルギーで処理を完了した。
金融分野から生命科学に至るまでの企業が人工知能(AI)モデルを改善するため絶えず訓練を実施しており、今後もエネルギー需要は急増するだろう。「私たちの手法により、二酸化炭素排出量と、モデルの訓練に費やされるエネルギーは確実に削減され、モデルの高速化とエネルギー効率向上が可能になります」とル・ガロは言う。
- 人気の記事ランキング
-
- China figured out how to sell EVs. Now it has to deal with their aging batteries. 中国でEV廃車ラッシュ、年間82万トンのバッテリー処理追いつかず
- Quantum navigation could solve the military’s GPS jamming problem ロシアGPS妨害で注目の「量子航法」技術、その実力と課題は?
- Text-to-image AI models can be tricked into generating disturbing images AIモデル、「脱獄プロンプト」で不適切な画像生成の新手法
- The great AI hype correction of 2025 GPT-5ローンチ失敗、 企業95%が成果出せず … 転換期を迎えたAIブーム
| タグ | |
|---|---|
| クレジット | Samuel Trümpy |
| 著者 | MIT Technology Review編集部 [MIT Technology Review Editors] |