Shinjini Kundu シンジニ・クンドゥ (27)
医療画像は詳細すぎて、人間が読み解くのは困難な場合がある。クンドゥのプログラムは、目に見えないほど微細な初期段階の病気のパターンを発見できる。
医療画像は病気の診断に極めて重要だが、画像が微細になればなるほど、人間が解釈するのはどんどん難しくなる。シンジニ・クンドゥは、医療画像を分析して、肉眼では検出不可能なパターンを発見する人工知能(AI)システムを開発した。クンドゥのイノベーションは、病気の検出と治療に根本的な影響を与える可能性がある。
「隠れた変化があったとき、目に見えないパターンを検出する方法があれば、症状が現れる前に早期診断が可能になるでしょう」とクンドゥはいう。
パターンを見い出すのを自ら学習するAIアルゴリズムはすでに存在する。しかし、理由を説明することはできない。医療診断では、これが制約となりかねない。どのように、またなぜ病気にかかるのかという知識がある程度なければ、対処できないからだ。
クンドゥのシステムを使えば、コンピューター・ビジョンにより、目に見えないほど微細な初期段階の病気の過程を示すパターンを見つけられる。彼女はさらに、AIを訓練して、独力で画像から疾病の目印を抜き出して見せられるようにした。そうすれば、病気が発症する数カ月前から数年前に、人間がそれを認識できるようになる。すなわち、人間がAIに教えるだけでなく、AIが人間に教えることができるわけだ。
(エリカ・べラス)
- 人気の記事ランキング
-
- This company is planning a lithium empire from the shores of the Great Salt Lake 来るか米リチウムラッシュ、 水使用10分の1の新技術で 「つるはし」売る企業
- Meet the man building a starter kit for civilization 家もトラクターも自分で作る 元物理学者の農家が始めた 「文明のDIYキット」
- The first new subsea habitat in 40 years is about to launch キッチンもある「海底の家」 40年ぶりの居住施設で 科学者4人が1週間生活へ
- How do our bodies remember? 解説:運動をやめても筋肉は覚えている——復帰が速い科学的理由とは
| タグ | |
|---|---|
| クレジット | Photograph by Kate Warren Styling by Carla Pressley |
| 著者 | MIT Technology Review編集部 [MIT Technology Review Editors] |