
患者が生存するか死亡するかは、しばしば迅速かつ正確に診断される。 しかし、感染症に対する致命的な反応である敗血症では、医師が症状を診断できる決定的な単一の検査は存在しない。
ジョンズ・ホプキンズ大学のスーチ・サリア助教授は、既存の医療データを使って、どの患者が最も敗血症にかかる危険性が高いかを予測できないだろうかと考えた。サリア助教授は 患者のデータを分析するためのアルゴリズムを作成し、症例の85%で、敗血症性ショックを発症より平均で1日以上も前に正確に予測した。既存のスクリーニングテストよりも60%改善されたことになる。
(エミリー・ムーリン)
- 人気の記事ランキング
-
- It’s pretty easy to get DeepSeek to talk dirty 「お堅い」Claude、性的会話に応じやすいAIモデルは?
- Promotion Call for entries for Innovators Under 35 Japan 2025 「Innovators Under 35 Japan」2025年度候補者募集のお知らせ
- Google’s new AI will help researchers understand how our genes work グーグルが「アルファゲノム」、遺伝子変異の影響を包括的に予測
- Tech billionaires are making a risky bet with humanity’s future マスク、アルトマン、ベゾス ——テックセレブたちが描く 未来への「危険な賭け」
- What is vibe coding, exactly? バイブコーディングとは何か? AIに「委ねる」プログラミング新手法