
患者が生存するか死亡するかは、しばしば迅速かつ正確に診断される。 しかし、感染症に対する致命的な反応である敗血症では、医師が症状を診断できる決定的な単一の検査は存在しない。
ジョンズ・ホプキンズ大学のスーチ・サリア助教授は、既存の医療データを使って、どの患者が最も敗血症にかかる危険性が高いかを予測できないだろうかと考えた。サリア助教授は 患者のデータを分析するためのアルゴリズムを作成し、症例の85%で、敗血症性ショックを発症より平均で1日以上も前に正確に予測した。既存のスクリーニングテストよりも60%改善されたことになる。
(エミリー・ムーリン)
- 人気の記事ランキング
-
- How AI and Wikipedia have sent vulnerable languages into a doom spiral AI翻訳のゴミに汚染された ウィキペディア、 マイナー言語にとどめ
- The three big unanswered questions about Sora 時間も資金も溶かす? AI動画SNS「Sora」3つの疑問
- Inside the most dangerous asteroid hunt ever 史上最も危険な小惑星 「2024 YR4」追った 科学者たちの60日間
- EV tax credits are dead in the US. Now what? 米EV減税が正式廃止、今後の動きをドイツの先例から予想