
数百万人もの患者の医療記録を保存している大規模なバイオバンクからは、遺伝的変異が人々の健康にどのような影響を与える可能性があるか、うかがい知ることができる。この利点を活かすために、32歳のジョエル・ムバトシューは、「リジェニー(Regenie)」という機械学習モデルを開発した。データをより高速かつ安価に分析できるようにし、必要なコンピューティング・パワーも減らせるモデルだ。この方法を用いれば、研究者は特定の疾患に関連する遺伝的変異を、より簡単に特定できるようになる可能性がある。ムバトシューは、「大規模なバイオバンクを横断するコラボレーションが増えています。それらの多くは、多様な集団からなる個人が対象となるものです。リジェニーを使えば、こうしたデータを活かせるようになり、臨床医療の改善につながるような発見が可能になります」と話す。
- 人気の記事ランキング
-
- How to run an LLM on your laptop チャットGPTからの卒業:自分のパソコンでLLMを動かしてみよう
- Promotion MITTR Emerging Technology Nite #34 【9/10開催】伝説の玩具「アームトロン」開発者が誕生秘話を語る
- Apple AirPods : a gateway hearing aid お値段10分の1のAirPods補聴器はどれぐらい使える?
- On the ground in Ukraine’s largest Starlink repair shop <現地ルポ>ウクライナの 生命線「スターリンク」 1万台超を直した非公式工場
- Should AI flatter us, fix us, or just inform us? 迷走したチャットGPTの人格設計、問われる人間との距離感