数百万人もの患者の医療記録を保存している大規模なバイオバンクからは、遺伝的変異が人々の健康にどのような影響を与える可能性があるか、うかがい知ることができる。この利点を活かすために、32歳のジョエル・ムバトシューは、「リジェニー(Regenie)」という機械学習モデルを開発した。データをより高速かつ安価に分析できるようにし、必要なコンピューティング・パワーも減らせるモデルだ。この方法を用いれば、研究者は特定の疾患に関連する遺伝的変異を、より簡単に特定できるようになる可能性がある。ムバトシューは、「大規模なバイオバンクを横断するコラボレーションが増えています。それらの多くは、多様な集団からなる個人が対象となるものです。リジェニーを使えば、こうしたデータを活かせるようになり、臨床医療の改善につながるような発見が可能になります」と話す。
- 人気の記事ランキング
-
- China figured out how to sell EVs. Now it has to deal with their aging batteries. 中国でEV廃車ラッシュ、年間82万トンのバッテリー処理追いつかず
- Quantum navigation could solve the military’s GPS jamming problem ロシアGPS妨害で注目の「量子航法」技術、その実力と課題は?
- Text-to-image AI models can be tricked into generating disturbing images AIモデル、「脱獄プロンプト」で不適切な画像生成の新手法
- The great AI hype correction of 2025 GPT-5ローンチ失敗、 企業95%が成果出せず … 転換期を迎えたAIブーム