
数百万人もの患者の医療記録を保存している大規模なバイオバンクからは、遺伝的変異が人々の健康にどのような影響を与える可能性があるか、うかがい知ることができる。この利点を活かすために、32歳のジョエル・ムバトシューは、「リジェニー(Regenie)」という機械学習モデルを開発した。データをより高速かつ安価に分析できるようにし、必要なコンピューティング・パワーも減らせるモデルだ。この方法を用いれば、研究者は特定の疾患に関連する遺伝的変異を、より簡単に特定できるようになる可能性がある。ムバトシューは、「大規模なバイオバンクを横断するコラボレーションが増えています。それらの多くは、多様な集団からなる個人が対象となるものです。リジェニーを使えば、こうしたデータを活かせるようになり、臨床医療の改善につながるような発見が可能になります」と話す。
- 人気の記事ランキング
-
- AI reasoning models can cheat to win chess games 最新AIモデル、勝つためなら手段選ばず チェス対局で明らかに
- This artificial leaf makes hydrocarbons out of carbon dioxide 人工光合成が次段階へ、新型人工葉が炭化水素合成に成功
- Everyone in AI is talking about Manus. We put it to the test. ディープシークの衝撃再び? 話題の中国製AIエージェントを試してみた
- Welcome to robot city アンデルセンの故郷、 ロボット産業の中心地に デンマーク小都市の成功物語