患者が生存するか死亡するかは、しばしば迅速かつ正確に診断される。 しかし、感染症に対する致命的な反応である敗血症では、医師が症状を診断できる決定的な単一の検査は存在しない。
ジョンズ・ホプキンズ大学のスーチ・サリア助教授は、既存の医療データを使って、どの患者が最も敗血症にかかる危険性が高いかを予測できないだろうかと考えた。サリア助教授は 患者のデータを分析するためのアルゴリズムを作成し、症例の85%で、敗血症性ショックを発症より平均で1日以上も前に正確に予測した。既存のスクリーニングテストよりも60%改善されたことになる。
(エミリー・ムーリン)
- 人気の記事ランキング
-
- Inside the controversial tree farms powering Apple’s carbon neutral goal 1日100万本の植林が生む 広大な「緑の砂漠」 ブラジル・セラードの光と影
- Inside the controversial tree farms powering Apple’s carbon neutral goal 1日100万本の植林が生む 広大な「緑の砂漠」 ブラジル・セラードの光と影
- Synthesia’s AI clones are more expressive than ever. Soon they’ll be able to talk back. 「不気味の谷」越え近づく? 進化した最新AIクローン技術
- Three big things we still don’t know about AI’s energy burden ようやく出てきた生成AIの電力消費、残された3つの疑問