
ディープマインド(DeepMind)の研究者グレッグ・ウェインは、人間と同じように間違いから学ぶことで上達していくことのできるソフトウェアを設計している。ウェインと共著者は、2016年に発表したネイチャー掲載論文の中で、従来の人工知能に使われていたニューラル・ネットワークでは解けなかった、グラフ問題や、論理パズル、木構造といった問題も新しいソフトウェアによって解けることを示した。
ウェインのコンピューティングにおける洞察は、ヒト脳のニューロン間ではどのように伝達が行われているのか、という関心が基盤となっている。つまり、なぜ、ある構造が特定の知覚や感情、意思を引き起こすのかといった問題だ。現在ウェインは、これらの脳の構造の裏側にあるコンセプトを、頻繁に機械の設計に転用している。
(ケイレブ・ガーリング)
- 人気の記事ランキング
-
- Five ways that AI is learning to improve itself 迫る「知能爆発」の兆し、 AIによるAIの進化は 5つの領域で起きている
- Promotion MITTR Emerging Technology Nite #34 【9/10開催】伝説の玩具「アームトロン」開発者が誕生秘話を語る
- What you may have missed about GPT-5 肩透かしだったGPT-5、オープンAIの方針転換に危うさ
- The greenhouse gases we’re not accounting for 見過ごされた気候フィードバック効果、温暖化が数年早まる可能性も
- It’s pretty easy to get DeepSeek to talk dirty 「お堅い」Claude、性的会話に応じやすいAIモデルは?