多くの人工知能(AI)モデルは、より正確な答えを出すために、人間がラベル付けした膨大なデータを必要とする。メタAI(Meta AI)の研究員であるイシャン・ミスラ(31)の研究によって、人間がラベル付けをしなくても、視覚的データのみでAIモデルの訓練が可能であることが示された。ミスラ研究員は、このような自己教師ありモデルによって、AIで解くことのできる問題の種類を大幅に増やせると考えている。ミスラ研究員は、「医用画像などの分野では、ラベル付けにコストがかかります。このような分野では、自己教師ありモデルが、はるかに低コストで、すばやくAIモデルを作成するのに大きく役立つ可能性があります」と話す。「また、自己教師ありモデルならAIモデルに、人間による監督なしで、次々と入力されてくるデータを観察させて連続的に新たなスキルを学ばせることもできます」。この利点は、常に変化する環境の中で稼働するロボットにとって、特に有用な可能性がある。
- 人気の記事ランキング
-
- Stratospheric internet could finally start taking off this year グーグルもメタも失敗した 「成層圏ネット」再挑戦、 2026年に日本で実証実験
- Promotion Emerging Technology Nite #36 Special 【3/9開催】2026年版「新規事業の発想と作り方」開催のお知らせ
- The first human test of a rejuvenation method will begin “shortly” ハーバード大教授主導の 「若返り治療」初の試験へ、 イーロン・マスクも関心
- A new CRISPR startup is betting regulators will ease up on gene-editing 期待外れのCRISPR治療、包括的承認で普及目指す新興企業
- How AGI became the most consequential conspiracy theory of our time 変人の妄想から始まった 「AGI(汎用人工知能)」 陰謀論との驚くべき共通点
