多くの人工知能(AI)モデルは、より正確な答えを出すために、人間がラベル付けした膨大なデータを必要とする。メタAI(Meta AI)の研究員であるイシャン・ミスラ(31)の研究によって、人間がラベル付けをしなくても、視覚的データのみでAIモデルの訓練が可能であることが示された。ミスラ研究員は、このような自己教師ありモデルによって、AIで解くことのできる問題の種類を大幅に増やせると考えている。ミスラ研究員は、「医用画像などの分野では、ラベル付けにコストがかかります。このような分野では、自己教師ありモデルが、はるかに低コストで、すばやくAIモデルを作成するのに大きく役立つ可能性があります」と話す。「また、自己教師ありモデルならAIモデルに、人間による監督なしで、次々と入力されてくるデータを観察させて連続的に新たなスキルを学ばせることもできます」。この利点は、常に変化する環境の中で稼働するロボットにとって、特に有用な可能性がある。
- 人気の記事ランキング
-
- This startup is about to conduct the biggest real-world test of aluminum as a zero-carbon fuel アルミ缶をクリーン燃料に、 米スタートアップが作った 「新エンジン」を訪ねた
- Promotion MITTR Emerging Technology Nite #35 Soraの問題点とは? AI時代の知財を考える11/12緊急イベント
- What a massive thermal battery means for energy storage 1000℃のレンガで熱貯蔵、世界最大の蓄熱電池が稼働
- I tried OpenAI’s new Atlas browser but I still don’t know what it’s for 誰のためのブラウザー? オープンAI「Atlas」が残念な理由
- An AI adoption riddle AIの試験運用は失敗続き、それでもなぜ投資をやめないのか?
