
多くの人工知能(AI)モデルは、より正確な答えを出すために、人間がラベル付けした膨大なデータを必要とする。メタAI(Meta AI)の研究員であるイシャン・ミスラ(31)の研究によって、人間がラベル付けをしなくても、視覚的データのみでAIモデルの訓練が可能であることが示された。ミスラ研究員は、このような自己教師ありモデルによって、AIで解くことのできる問題の種類を大幅に増やせると考えている。ミスラ研究員は、「医用画像などの分野では、ラベル付けにコストがかかります。このような分野では、自己教師ありモデルが、はるかに低コストで、すばやくAIモデルを作成するのに大きく役立つ可能性があります」と話す。「また、自己教師ありモデルならAIモデルに、人間による監督なしで、次々と入力されてくるデータを観察させて連続的に新たなスキルを学ばせることもできます」。この利点は、常に変化する環境の中で稼働するロボットにとって、特に有用な可能性がある。
- 人気の記事ランキング
-
- Why Chinese manufacturers are going viral on TikTok 「ほぼエルメス」を工場直送 中国の下請け企業が ティックトックで反旗
- A long-abandoned US nuclear technology is making a comeback in China 中国でトリウム原子炉が稼働、見直される過去のアイデア
- Here’s why we need to start thinking of AI as “normal” AIは「普通」の技術、プリンストン大のつまらない提言の背景
- AI companions are the final stage of digital addiction, and lawmakers are taking aim SNS超える中毒性、「AIコンパニオン」に安全対策求める声